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Abstract. This study explores the classification of glass artifacts based on their chemical 

composition. Using the stratified chi-square test method, the correlation between the chemical 

characteristics of glass artifacts and their susceptibility to weathering was analyzed. A decision 

tree model was constructed to predict and analyze the types of glass artifacts. To further study 

the types of glass artifacts, factor analysis was employed to reduce the dimensionality of the data, 

simplifying the data structure. Based on the reduced data, the K-means clustering algorithm was 

used to further classify the glass artifacts into three subcategories. 
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1.  Introduction 

The Silk Road was an important channel for cultural exchange between the East and the West in ancient 

China. Glass, as a significant trade commodity, was introduced to China early on. During its production 

and dissemination, it showcased China’s unique cultural background and technical features on the basis 

of absorbing foreign techniques. The primary raw material for glass is quartz sand, whose main chemical 

component is silicon dioxide (SiO₂). Due to the high melting point of pure quartz sand, fluxes need to 

be added during the smelting process. The choice of flux significantly influences the composition and 

properties of the glass. Lead-barium glass, considered a Chinese invention, incorporates lead ore as a 

flux during the firing process, resulting in high contents of lead oxide (PbO) and barium oxide (BaO). 

Potassium glass, mainly popular in southern China, Southeast Asia, and India, uses plant ash as a flux 

during the firing process, leading to a high potassium content [1]. Due to the influence of burial 

environments, ancient glass artifacts are prone to weathering over extended periods. The weathering 

process involves complex chemical reactions that may alter the composition ratios of the artifacts, 

thereby affecting their classification [2-3]. Therefore, studying the weathering processes of ancient glass 

artifacts is crucial for understanding the spread and development of ancient glass technology, as well as 

for accurately identifying and evaluating ancient glass relics. 
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2.  Model Assumptions 

Assume that all missing data in the appendices are zero, i.e., it is considered that the artifact does not 

contain this type of chemical component. 

Assume that the difference between the chemical composition of unweathered artifacts and 

unweathered points and their original composition at the time of production is negligible. 

3.  Data Processing 

The competition provides component data related to two types of ancient glass artifacts: high potassium 

glass and lead-barium glass, including classification information of these artifacts and the proportions 

of their main components. 

3.1.  Eliminating Invalid Data 

The appendix 2 of the competition provides the proportions of the main components of the artifacts. Due 

to practical testing methods and other reasons, the sum of component proportions might not equal 100%. 

Therefore, data with the sum of component proportions between 85% and 105% are considered valid. 

Statistics show that the sum of component proportions for samples 15 and 17 is less than 85%, deeming 

them invalid. Hence, data from samples 15 and 17 are excluded. 

3.2.  Handling Missing Data 

The sampling points in table 2 of the competition are random parts of the artifact surfaces and do not 

represent the entire artifact. Considering that the missing data indicate undetected components, which 

does not mean the artifact lacks these chemical components, the missing data are replaced with 0.000001. 

3.3.  Component Data Processing 

Due to the limitations of constant sum effects and collinearity among components, statistical analysis 

cannot directly use the KMO and Bartlett’s sphericity test. Considering the data are in percentage form 

and to eliminate the limitations of the constant sum effects, the ALR (Additive Log-Ratio) 

transformation is used to process the raw data. This allows the use of all standard statistical methods 

that do not depend on distance to analyze the log-ratio transformed data. 

 alr(𝑥) = [ln (
𝑥1

𝑥𝐷
) , … , ln (

𝑥𝑖

𝑥𝐷
) , … , ln (

𝑥𝐷−1

𝑥𝐷
)]                 (1) 

Table 1. Data Processing Results 

  
Potassium 

Oxide (K₂O) 

Magnesium 

Oxide (MgO) 

Lead Oxide 

(PbO) 

Silicon 

Dioxide (SiO₂) 

Raw Data 
Skewness 2.113 -1.139 -1.456 -2.597 

Kurtosis 3.008 0.597 1.048 5.698 

Transformed 

Data 

Skewness -0.642 0.616 -0.951 0.818 

Kurtosis 0.12 -0.099 0.263 0.183 

 

After performing the log-ratio transformation on the raw data, both skewness and kurtosis 

significantly decrease, making the data more normally distributed. 

4.  Correlation Analysis Between Surface Weathering of Artifact Samples and Properties of Glass 

Artifacts 

4.1.  Chi-Square Test 

The chi-square test is used to analyze the correlation between the surface weathering of glass artifacts 

and their type, pattern, and color. 

Step One: Establish Hypothesis Testing 
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Set the presence of surface weathering on the artifact as the dependent variable, and the glass type, 

pattern, and color as the independent variables. Assume that the dependent and independent variables 

are independent of each other. 

Step Two: Calculate Expected Frequencies and Actual Frequencies 

The actual frequencies are obtained by statistical analysis of the data provided in Appendix Table 3 

of the competition. 

Step Three: Substitution and Calculation 

Calculate the chi-square value 𝑥2: 

𝑥2 = ∑
(𝑓𝑜 − 𝑓𝑒)2

𝑓𝑒
 (2) 

Where 𝑓𝑜 is the observed frequency, and 𝑓𝑒 is the expected frequency. 

Degrees of Freedom 𝑘: 

𝑘 = (𝑅 − 1)(𝐶 − 1) (3) 

Where 𝑅 is the number of categories of the independent variables, and 𝐶 is the number of categories 

of the dependent variable. Use a Python function to obtain the 𝑝 − 𝑣𝑎𝑙𝑢𝑒. 

Step Four: Determine Whether to Accept the Null Hypothesis 

Set the significance level 𝑎 = 0.05. Consult the chi-square critical value table and compare it with 

𝑥2 to determine the correlation between the variables. Also, compare the significance level 𝑎 with the 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 . If 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝑎 , it indicates that at the significance level 𝑎 , the null hypothesis is 

rejected[4]. 

See Appendix 1 for specific procedures. The chi-square test results are shown in Table 2. 

Table 2. Chi-Square Test Results 

 Chi-Square Value 𝑝 − 𝑣𝑎𝑙𝑢𝑒 
Degrees of 

Freedom 

Chi-Square Critical Value 

at 𝑎 = 0.05 

Glass Type 5.4518 0.0195 1 3.841 

Pattern 4.9565 0.0839 2 5.991 

Color 6.2871 0.5066 7 14.067 

 

Analyzing the data in Table 2, we can see that the surface weathering of glass artifacts is correlated 

with the type of glass. Lead-barium glass is prone to weathering, whereas high-potassium glass is 

not easily weathered. 

At the same time, in the chi-square test results for patterns and colors, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is higher than 

the significance level 𝑎, so we accept the null hypothesis, indicating that patterns and colors are not 

correlated with weathering. 

4.2.  Stratified Chi-Square Test 

Observing the data in Table 2, we find that when using patterns as the independent variable, the chi-

square value and 𝑝 − 𝑣𝑎𝑙𝑢𝑒  are close to the critical value and significance level 𝑎 , suggesting a 

possible correlation. Using the CMH test for further examination, the results are shown in Table 3. 

Table 3. CMH Test Results 

 Chi-Square Value 𝑝 − 𝑣𝑎𝑙𝑢𝑒 
Degrees of 

Freedom 

Chi-Square Critical Value 

at 𝑎 = 0.05 

Pattern 17.01442 0.0002 2 5.991 

 

Based on the data in Table 2, it can be seen that, after stratifying by glass type, patterns are also 

correlated with whether the surface of glass artifacts is weathered. In high-potassium glass, pattern B is 
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prone to weathering, while patterns A and C are not. In lead-barium glass, the results are not statistically 

significant.  

Due to the small sample size for certain color data in the artifacts, the statistical significance is not 

valid, and it is not possible to determine the correlation between color and whether the artifact surface 

is weathered. 

5.  Classification Model Based on Decision Tree 

The CART decision tree algorithm selects features based on the Gini index, aiming for the highest purity 

in each child node, where all observations in a child node belong to the same category. The CART 

algorithm is a commonly used method for binary classification, generating a binary tree with high 

operational efficiency. 

According to Form 2, glass artifacts can be divided into two major categories: high-potassium glass 

and lead-barium glass, with the glass type of each sampling point known. Supervised learning can be 

used for classification. Due to the small data size and missing data, a CART decision tree model is 

constructed to classify and select the features for different types of glass[5]. 

5.1.  CART Decision Tree Model 

The Gini coefficient represents the purity of the dataset. The smaller the Gini coefficient, the higher the 

purity of the dataset, and the better the selected splitting attribute. 

For binary classification using the CART algorithm, the Gini coefficient for a probability distribution 

is: 

𝐺𝑖𝑛𝑖(𝑝) = 2𝑝(1 − 𝑝) (4) 

For a sample 𝐷 with size |𝐷|, split into |𝐷1| and |𝐷2| based on attribute 𝐴𝑖 at value 𝑎, the Gini 

coefficient of attribute 𝐴𝑖 is: 

Gini_index(𝐷, 𝐴𝑖) =
|𝐷1|

|𝐷|
Gini(𝐷1) +

|𝐷2|

|𝐷|
Gini(𝐷2) (5) 

The attribute with the smallest Gini coefficient after splitting is chosen as the optimal splitting 

attribute, yielding the optimal decision node. 

Considering that the main chemical components of glass may change due to weathering, the model 

uses the presence of weathering, and the contents of SiO₂, Na₂O, K₂O, CaO, MgO, Al₂O₃, Fe₂O₃, CuO, 

PbO, BaO, P₂O₅, SrO, SnO₂, and SO₂ as classification features. The glass type is used as the category to 

construct the decision tree model. 

5.2.  Classification Results 

For the given dataset, 70% of the data is used as the training set and 30% as the test set. The decision 

tree obtained is shown in Figure 1. 

 

Figure 1. Decision Tree Results 
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From Figure 1, it can be seen that the classification of glass artifact types is primarily determined by 

the PbO content. When the PbO content in the glass is less than or equal to 5.355, the glass artifact is 

considered to be high-potassium glass; otherwise, it is considered to be lead-barium glass. 

Using the test set for prediction, the model evaluation results are shown in Table 4. 

Table 4. Decision Tree Evaluation Table 

 precision recall F1-score support 

High Potassium 1.00 1.00 1.00 6 

Lead-Barium 1.00 1.00 1.00 14 

accuracy   1.00 20 

macro avg 1.00 1.00 1.00 20 

weighted avg 1.00 1.00 1.00 20 

 

From Table 4, it can be seen that the precision, recall, accuracy, and F1-score of the model are all 1, 

indicating excellent performance. 

6.  Subdivision of Glass Artifact Subcategories 

Perform principal component analysis (PCA) and factor analysis on the processed data. 

Firstly, check the suitability of the data through the Kaiser-Meyer-Olkin (KMO) measure and 

Bartlett’s sphericity test. The KMO value is found to be 0.843, which is greater than 0.6, indicating 

suitability for factor analysis. The Bartlett test yields a p-value less than 0.05, indicating a certain degree 

of correlation between the observed variables. The results are shown in Table 5. 

Table 5. KMO and Bartlett Test 

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.843 

Bartlett’s Test of Sphericity 

Approximate Chi-Square 841.850 

Degrees of Freedom 78 

Significance .000 

 

Using the get_eigenvalues() function, calculate the eigenvalues and plot the scree plot, as shown 

in the following figure. 

 

Figure 2. Scree Plot 
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Table 6. Variance Explained Ratio 

Component 
Initial Eigenvalue 

Total Variance Percentage Cumulative % 

1 7.252 55.781 55.781 

2 1.661 12.776 68.557 

3 0.966 7.430 75.988 

4 0.818 6.294 82.282 

5 0.602 4.631 86.913 

6 0.420 3.234 90.147 

7 0.339 2.607 92.754 

8 0.292 2.244 94.998 

9 0.266 2.045 97.043 

10 0.205 1.573 98.617 

11 0.112 0.865 99.482 

12 0.055 0.425 99.907 

13 0.012 0.093 100.000 

 

Combining the scree plot with the variance explained ratio, as the cumulative variance explained 

exceeds 80%, we extract 4 principal components. The factor loading matrix is as follows: 

Table 7. Rotated Component Matrix 

 Component 1 Component 2 Component 3 Component 4 

SiO2 0.668 0.330 0.516 0.324 

Na2O 0.556 0.418 0.541 -0.226 

K2O 0.855 0.123 0.199 0.001 

CaO 0.361 0.275 0.489 0.403 

MgO 0.674 0.324 0.134 0.352 

Al2O3 0.692 0.388 0.469 0.343 

Fe2O3 0.570 0.055 0.314 0.568 

CuO 0.175 0.173 0.875 0.229 

PbO 0.090 0.895 0.256 0.178 

BaO 0.037 0.903 0.219 0.080 

P2O5 0.139 0.230 0.157 0.860 

SrO 0.327 0.796 0.038 0.229 

SnO2 0.722 0.447 0.018 0.348 

 

Utilizing loadings_ to solve the initial factor loading matrix, employing the method of maximum 

variance for factor rotation, to ensure that each primary factor corresponds to only a few variables with 

high loadings, while the rest have small loadings. Additionally, each variable only has high loadings on 

a few primary factors, with the loadings on the rest of the factors being small. The heat map of the 

rotated factor loading matrix is shown in Figure 3. 
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Figure 3. Heat Map of the Rotated Factor Loading Matrix 

The consistency between factor scores and factor loadings verifies the rationality of the model. 

Based on the analysis results, the factors are named. 

Table 8. Naming Results of Factors 

Factor Naming 

Factor 1 Alkaline and Neutral Oxides Content 

Factor 2 Lead, Barium, and Strontium Content 

Factor 3 Copper Content 

Factor 4 Phosphorus Content 

 

To facilitate the subsequent data analysis, based on the obtained factor loading matrix, data 

dimensionality reduction is performed. The data is reduced to four dimensions, represented by 

𝑌1, 𝑌2, 𝑌3, and 𝑌4, describing the four types of features characterizing the composition of artifacts. 

Table 9. Results of Factor Analysis for Two Types of Artifacts 

Artifact ID Y1 Y2 Y3 Y4 

01 -3.536232633 -24.63664982 -0.34243589 1.163161747 

02 46.08258826 35.15990965 35.00831526 35.72478231 

03 (Part 1) 32.83402342 20.59576918 30.26523463 23.08351563 

…… …… …… …… …… 

58 45.13664138 45.80571561 39.10959104 37.36482817 

 

Separate the high-potassium glass artifacts from the lead-barium glass artifacts. 

Perform K-means clustering based on the four types of features, firstly determine the value of K 

using the elbow method. 
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Figure 4. Determination of the Number of Subclasses for High-Potassium Glass (Left) and Lead-Barium 

Glass (Right) Using the Elbow Method 

For high-potassium glass artifacts, from Figure 3, it can be inferred that 𝑘 = 3. The clustering results 

are shown in Table 9. 

Table 10. Clustering Results for High-Potassium Glass Artifacts 

Artifact 

Sampling 

Point 

Clustering 

Result 
Y1 Y2 Y3 Y4 

1 1 -3.5362 -24.636 -0.3424 1.1632 

03 (Part 1) 2 32.8340 20.5958 30.2652 23.0835 

03 (Part 2) 0 49.0414 41.0055 39.9121 35.6474 

4 1 -2.4091 -24.007 -0.1797 1.4916 

5 1 -1.3859 -20.083 -0.5117 2.4396 

06 (Part 1) 0 45.5860 36.5058 33.9339 32.7461 

06 (Part 2) 0 49.8903 39.6685 39.3898 37.6643 

7 2 26.6422 15.1345 29.0580 25.6831 

9 2 33.7596 13.5470 29.8082 25.0537 

 

Combining the known data, the third class represents sampling points of weathered high-potassium 

glass artifacts, while the first and second classes represent sampling points of unweathered glass artifacts. 

The first class has relatively high values for all four features, while the second class has relatively low 

values for all four features. The third class has moderate values for all four features. 

For lead-barium glass artifacts, from Figure 3, it can be inferred that 𝑘 = 3. The clustering results 

are shown in Table 10. 

Table 11. Clustering Results for Lead-Barium Glass Artifacts 

Artifact 

Sampling 

Point 

Clustering 

Result 
Y1 Y2 Y3 Y4 

2 2 46.0826 35.1599 35.0083 35.7248 

8 1 -33.6213 -7.9375 -9.4081 -9.5908 

08 Severely 

Weathered 

Point 

1 -44.7750 -16.9501 -18.2181 -15.8559 

11 2 39.5830 45.8862 36.5329 32.3368 
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19 2 38.1014 46.2657 37.5290 37.3715 

20 0 34.0811 33.6977 33.3080 28.2910 

23 

Unweathered 

Point 

0 36.7228 47.5544 37.7153 18.8529 

24 0 25.7807 43.6748 32.5765 24.9858 

25 

Unweathered 

Point 

2 36.5538 46.0632 39.4500 27.8827 

 

Based on the above results, the sub-classification of lead-barium artifacts is obtained. Among them, 

the first class has relatively low values for all four features, the second class has relatively high values 

for all four features, and the third class has at least one slightly smaller feature value. 

Combining the results of factor analysis and K-means clustering, we can classify potassium glass 

artifacts into three subclasses: high alkaline oxides, medium alkaline oxides, and low alkaline oxides. 

Similarly, lead-barium glass artifacts can also be classified into three subclasses: high alkaline oxides, 

low alkaline oxides, and low-phosphorus compounds. 

7.  Conclusion 

This study, through chi-square tests, found a correlation between the degree of weathering on the surface 

of glass artifacts and their glass types. The decoration patterns on high-potassium glass showed 

correlation with weathering, while in lead-barium glass, the two were found to be independent and 

unrelated. By constructing a CART decision tree model, it was determined that the content of PbO in 

glass is a primary indicator for distinguishing between high-potassium glass and lead-barium glass. 

Through validation, it was proven that the classification model used in this study has high classification 

performance, showing good accuracy and sensitivity, which is significant for the classification and 

identification of ancient glass artifacts. 

To further investigate the classification patterns of glass artifacts, factor analysis and K-means 

algorithms were used for subclassification. The final results indicate that high-potassium glass artifacts 

can be divided into three subclasses: high-alkaline oxides, medium-alkaline oxides, and low-alkaline 

oxides; lead-barium glass artifacts can also be divided into three subclasses: high-alkaline oxides, low-

alkaline oxides, and low-phosphorus compounds. The subclassification mentioned above holds 

significance for the study of glass artifact composition, playing an important role in subsequent artifact 

identification, preservation, restoration, and other related activities. 
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