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Abstract. Alzheimer's Disease (AD) causes memory decline beyond normal aging and is the 

most common cause of dementia. Early detection and intervention can delay the progression of 

AD and alleviate symptoms. However, high expense, insensitivity, and inconvenience are among 

various deterrents to traditional diagnosis methods. Dementia impacts more than 55 million 
people globally, with this number set to double every 20 years. Much of this increase will be in 

low- and middle-income countries which often lack the resources for early diagnosis. Recently 

speech has emerged as an effective digital biomarker for AD detection. However, most studies 

in this area are limited to English speech due to lack of suitable data in other languages. This 

study aims to construct a speech-based classifier (VoiceAD) that can be trained on English data 

and still maintain its performance on other languages. Acoustic features were extracted from 

English, Spanish, and Greek data from DementiaBank with the eGeMAPS v2.0 feature set. 

Subsequently, an Extra Trees model was employed for classification. VoiceAD’s performance 

for English and Greek surpassed that of the baseline model and model incorporating only 

demographic data while the Spanish performance was lower due to task effect. In addition, 

VoiceAD’s satisfactory generalizability and interpretability positions it as a promising candidate 

for clinical applications. It can be implemented as a free screening tool such as a mobile 
application to monitor AD risk. VoiceAD’s crosslingual applicability can its enable worldwide 

deployment, especially in settings where traditional methods of diagnosis are less attainable.  

Keywords: Alzheimer's Disease Detection, Multilingual Speech, Extra Trees Classifier. 

1.  Introduction 

Alzheimer's Disease (AD), which is the predominant cause of dementia, is a progressive disease 

characterized by memory decline beyond normal aging. Despite substantial efforts to develop therapies 
or drugs, the cessation of neurodegeneration remains an elusive goal. However, slowing its progression 

and alleviating symptoms is attainable [1], especially in early stages like mild cognitive impairment 

(MCI) [2] and subjective cognitive decline (SCD) [3]. Traditional biomarkers for AD are invasive 

(cerebral spinal fluid amyloid), expensive (neuroimaging), or professional knowledge-intensive 
(neuropsychological tests such as Mini-Mental State Examination (MMSE) and logistic memory test), 

despite their well-documented accuracy or sensitivity. This makes novel measures which are cost- 

effective and convenient crucial. Language from speech has emerged as a new digital biomarker thanks 
to its shared neuro substrates with memory [4-5], continuous development with disease progression [6], 

and sensitivity to disease onset even in very early stages [7]. Language also offers practical benefits 
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including low-cost data collection and the potential for automated analyses using natural language 

processing tools. 

The mathematical properties of speech signals, such as the speech spectrum, have demonstrated 

considerable promise in the detection of AD. Temporal and acoustic parameters were also found to 
change in very early stages, such as prolonged syllables [8], less fluctuation in frequency (jitter) but 

more fluctuations in amplitude (shimmer) [9-10], vocal dysperiodicity [11], and prosodic formant 

envelopes [12]. Notably, speech breaks, i.e., pauses, emerge as promising features. Increased pauses in 
speech have been observed in MCI patients with AD pathology, correlating with episodic memory 

performance [13]. Similar patterns were also reported in many other studies [14-18]. 

Prior research has shown the efficacy of machine learning algorithms utilizing acoustic features for 

AD prediction [19]. [20], using an English dataset, achieved accuracy scores of 72% in classifying AD 
from controls using acoustic features with a support vector machine model. [21], using the same English 

dataset, applied a random forest algorithm with acoustic features to classify AD from controls and got 

an accuracy of 72.6% before data augmentation and 82.2% after data augmentation in an English dataset. 
Despite the satisfactory performance observed, it is imperative to acknowledge that the prevailing 

studies predominantly use the dataset from the InterSpeech challenge and its source corpus (Pitt Corpus) 

[22-23] which contains speech (elicited from picture description) in American English. Notably, datasets 
in other languages were either insufficient in size to facilitate the training of reliable machine learning 

models or exhibited significant heterogeneity compared to the English dataset, for example, 

encompassing divergent tasks and settings. 

Dementia is on the rise worldwide, especially in low and middle income countries, which currently 
accounted for 60% of Dementia cases in 2020 with this number rising to 71% by 2050. China, India, 

and their south Asian and western Pacific neighbors will exhibit the fastest growth of Dementia cases 

in their elderly populations [24]. This study aims to construct a speech based classifier which can be 
generalized across languages so that patients who speak different languages are given equal access to 

this non-invasive and low cost method of detection. A classification model will be trained on the public 

English dataset and tested on Greek and Spanish datasets, and both the generalizability and 

interpretability of the model will be examined. My research questions are as follows: 
(1) Can a speech-based algorithm effectively facilitate AD detection? 

(2) Is the model capable of generalizing its performance across different languages? 

(3) Can the model perform equivalently on unseen data, reflecting its generalizability to 
new datasets and real-world scenarios? 

(4) What are the key features that the model predominantly learns from in the process of 

AD detection? 
I hypothesize that building such a model will be possible. The speech features reflecting the quality 

of the voice, such as loudness and noise ratio, could be among the most significant features across the 

languages from which the model learns, based on previous findings on Spanish and Catalan data [25]. 

2.  Methods 

2.1.  Dataset 

Three datasets in different languages were utilized, i.e. English, Greek, and Spanish, sourced from 

Dementiabank [26]. The English and Greek datasets were derived from the ADDReSS-M challenge [27]. 
The English and Greek datasets encompass speech recordings of picture descriptions obtained from 237 

and 54 older adults, respectively, categorized as either healthy controls (HC) or probable Alzheimer's 

disease (pAD). To ensure a balanced representation, both datasets underwent propensity score matching 
(PSM) for age and gender, to address potential confounding and bias in demographic factors [27]. The 

Spanish Ivanova Corpus [28] was used for the Spanish Data, and gathered speech data through a reading 

task where participants were instructed to read the first two sentences of Don Quixote by Cervantes. 

Similar to the English and Greek datasets, participants from the Ivanova Corpus were also selected using 
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the PSM approach to alleviate potential bias. Comprehensive demographic details for the three datasets 

can be found below in Table 1. 

Table 1. Demographic data for the English, Greek, and Spanish datasets 

Language Variables HC pAD Test p value 

English Number 115 122 / / 
 Age 66.06 69.38 T Test < .001*** 

 Gender 65.22% 64.75% χ2 Test < .940 

 Education 13.98 11.97 T Test < .001*** 
 MMSE 28.97 17.84 T Test <.001*** 

Greek Number 28 26 / / 

 Age 66.57 72.73 T Test .002** 

 Gender 71.43% 73.07% χ2 test .893 
 Education 12.00 9.50 T Test .025* 

 MMSE 28.82 20.96 T Test < .001* 

Spanish Number 45 74 / / 

 Age 77.80 79.49 T Test .257 
 Gender 60.00% 59.46% χ2 test .954 

 Education 8.93 8.81 T Test .881 

 MMSE 28.39 19.97 T Test < .001*** 
Note: *Sex is represented as percentage of females. Education is measured in years. Age, Education, and MMSE are all 
represented by the mean values in each of their groups. * p < .05, ** p < .01, *** p < .001. 

 

Figure 1. Standardized mean differences across age and gender before (in yellow) and after (in blue) 

propensity score matching. 

2.2.  Acoustic-prosodic Feature Extraction 

Speech features were extracted using the eGeMAPsv02 feature set from Opensmile 3.0 [34] at the level 

of functionals. The eGeMAPsv02 feature set includes 88 acoustic-prosodic features, encompassing 
frequency, amplitude, spectral and cepstral, and temporal parameters of the speech. Frequency measures 

the span of vibrations throughout the transmission of speech, such as pitch, jitter (frequency variation), 

and formant envelopes. Amplitude indicates sound wave strength or loudness, and is gauged through 
features like shimmer (amplitude variation), loudness, and harmonic to noise ratio (HNR). Spectral and 

cepstral features are derived from the speech spectrum and its Fourier transformation (icepstrum), such 

as spectral flux (related to timber), spectral slop (linked to glottalized sounds), and mel-frequency 
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cepstral coefficients (MFCC, representative of the vocal tract shape). Temporal features describe the 

duration or length of speech, offering information about the temporal aspects of the spoken content. This 

feature set, which combines spectral, cepstral, and temporal features together, helps maintain a 

comprehensive analysis of speech. Selection of this feature set was decided based on comparisons with 
the CompareE feature set and wav2vec2 embedding, with details available in the appendix. 

2.3.  Extra Trees Classifier with feature selection 

The Extra Trees (Extremely Randomized Trees) algorithm was used as the classifier. Extra Trees is an 
ensemble learning model that leverages a "forest" of individual decision trees. Each decision tree 

operates as a predictive model, learning simple decision rules in a tree-like hierarchical structure from 

the input data. The "extra" in Extra Trees signifies the introduction of randomness in selecting split 

points for features, which mitigates the risk of overfitting and thus enhances the model’s robustness. 
The Extra Trees classifier comprised 10 decision trees, each with a maximum depth of three and random 

state of forty-two. Entropy-based Shannon information gain was used to measure the quality of a split. 

The precision, recall, F1, and accuracy scores, were used as evaluation metrics, with pAD as the positive 
label. This assessment was conducted using stratified 10-fold cross-validation to ensure a 

comprehensive evaluation of the classifier's effectiveness. To mitigate the risk of incorporating noisy 

and non-useful data in the classification process, a subset of features using the ANOVA F value (the 
SelectKBest algorithm) was selected from the eGeMAPSv02 feature set. The selection process involved 

recursively running the classification, starting from a single most important feature, and gradually 

incorporating additional features, up to all 88 features in the set, with the optimal F1 score as the criterion. 

Such a model developed on the English data would then be tested on Greek and Spanish data to evaluate 
its crosslingual performance with the identical performance metrics. F1 score was used as the main 

matrix due to imbalance number of subjects between groups. The selection of Extra Trees classifier was 

decided based on comparisons with other algorithms, with details available in the appendix. 

2.4.  Model fitting and agreement 

A learning curve was used to observe the risk of overfitting. The learning curve visualizes how the 

performance of the model evolves as the amount of data increases, by contrasting the F1 score of the 

model on the training set to that on the cross-validation set. If the two curves converge or become closer 
to each other with the number of samples increase, it indicates that the model is less likely to suffer from 

overfitting. Overfitting occurs when a model tailors itself to a specific dataset, limiting its applicability 

to other datasets due to selection bias. While it is impossible to completely avoid selection bias, learning 
curve offers the opportunity to observe the risk of overfitting and assess the model's ability to generalize. 

To further examine the model's generalizability, the agreement of classification results among the ten 

decision trees were examined. Significant disparities in output predictions among these decision trees 
may indicate potential issues such as overfitting or instability in the model. Cohen's kappa together with 

prediction variance was introduced as a metrics for the agreement among ten decision trees. 

2.5.  Model interpretation 

SHapley Additive exPlanations (SHAP values) were leveraged to explore the impact of each feature in 
the automated analysis. SHAP values assign each feature an importance score based on the difference 

between a model that lacks that specific feature and one that incorporates that feature. After identifying 

the top 10 most impactful features for the Extra Trees model, a generalized linear model (GLMs) with 
Gaussian distribution and identity link function was applied to investigate the difference between 

controls and AD on these features in the English dataset, with the demographic effects (age, sex, and 

education) regressed out. This offered an insight into the most crucial features for detecting AD and how 
they undergo changes in the pathology. Crosslingual performance was interpreted with the difference in 

magnitude of acoustic changes in AD pathology across different languages. Identical GLMs were used 

for all features selected for classification in the three datasets. For each feature, three absolute Z values 

were computed, serving as indicators of the absolute differences between control subjects and those with 
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Alzheimer's Disease (AD) in the respective datasets. These Z values quantified the magnitude of acoustic 

changes associated with AD for each feature. To assess the differences in acoustic changes related to 

AD across languages, a repeated-measure ANOVA test was conducted utilizing features as subjects, Z 

scores as the dependent variable, and language as the within-factor, and with a post hoc paired sample 
T tests. Statistical significance is recognized when the p value (or corrected p value) is less than 0.05. 

Finally, error analysis was conducted by looking at cognitive test scores to see why the model made 

mistakes on specific cases and to suggest potential improvements for future work. For this aim, ANOVA 
tests were conducted to investigate the effect of group (control or probable AD), prediction correctness 

(True or False), and the interaction between the two factors. 

3.  Results 

3.1.  Model performance 
Figure 2 summarizes the model’s performance on the English dataset and on the crosslingual tasks. 

Utilizing 69 features out of the total 88 features from the eGeMAPS v02 feature set, the model 

achieved its optimal F1 score on the English dataset (Figure 2A). Specifically, the Extra Trees model, 
leveraging these 69 features as input, demonstrated an accuracy of 0.638, precision of 0.608, recall of 

0.836, and an F1 score of 0.702 via cross-validation on the English dataset. After training on all the 

English data, the model demonstrated an accuracy of 0.667, precision of 0.605, recall of 0.885, and an 
F1 score of 0.719 on the Greek data, but an accuracy of 0.513, precision of 0.786, recall of 0.297, and 

an F1 score of 0.431. The F1 score on the Greek data was higher than the baseline model [27] and the 

demographic model (0.686) but not for the Spanish data. 

 

Figure 2. Model performance. (A) F1 scores from Extra Tree model using different numbers of selected 

features on the English (green), Greek (blue), and Spanish (pink) datasets, with an average F1 score 

across all three languages (dashed purple). Y-axis contains F1 scores, x-axis contains the number of 
selected features. * represents the number of features when the model got best F1 scores on the English 

data. ‡ represents the number of features when the model got best F1 scores on average. (B) Performance 

of the Extra Tree model using acoustic speech features on the English, Greek and Spanish datasets. (C) 

Performance of the Extra Tree model using demographic features (age, sex, and education) on the 
English, Greek and Spanish datasets. 
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3.2.  Model generalizability 

The learning curve, as shown in Figure 3A showed a trend toward convergence between the training 

and cross-validation scores indicating a low risk of overfitting. The variances of predictions among the 

constituent decision trees remained low in both the Greek dataset (Figure 3B) and the Spanish datasets 
(Figure 3C). The agreement scores of 0.703 for the Greek dataset and 0.736 for the Spanish dataset, 

together with the low prediction variances, suggest a consistent and reliable model performance across 

different decision trees, further reinforcing the model's stability and generalizability. 

 

Figure 3. Generalizability of the model. (A) Learning curve displaying the model's training scores 
(orange) and cross-validation scores (green) as the number of training samples increase (x axis). (B) 

Prediction variance among comprising decision trees across subjects in the Greek dataset, with the 

Cohen’s kappa in the subtitle. (C) Prediction variance among comprising decision trees across subjects 
in the Greek dataset, with the Cohen’s kappa in the subtitle. 

3.3.  Model interpretation 

The top ten features with the largest SHAP values, shown in Figure 4A, from the largest to the tenth 

largest, were: (1) loudness_sma3_stddevFallingSlope: standard deviation of the slope or rising signal 
parts of loudness, related to sound intensity; (2) loudness_sma3_percentile80.0: 80th percentile of 

estimate of perceived signal intensity, related to sound intensity; (3) 

F1amplitudeLogRelF0_sma3nz_stddevNorm: mean of the ratio of the energy of the spectral harmonic 
peak at the first formant ś center frequency to the energy of the spectral peak at F0 in voiced regions, 

related to nasal or honky sounds; (4) F3amplitudeLogRelF0_sma3nz_stddevNorm: mean of the ratio of 

the energy of the spectral harmonic peak at the third formant ś center frequency to the energy of the 

spectral peak at F0 in voiced region, related to nasal or honky sounds; (5) loudnessPeaksPerSec: the 
number of loudness peaks per second, related to sound intensity; (6) loudness_sma3_amean: mean of 

estimate of perceived signal intensity, related to sound intensity; (7) logRelF0-H1-

H2_sma3nz_stddevNorm: Coefficient of variation of the ratio of energy of the first F0 harmonic (H1) 
to the energy of the second F0 harmonic (H2) in voiced regions, related to creaky sound production; (8) 

F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2: range of 20-th to 80-th of logarithmic F0 on a semitone 

frequency scale, starting at 27.5 Hz, related to turbulence noise during phonation; (9) 
loudness_sma3_percentile50.0: 50th percentile of estimate of perceived signal intensity, related to sound 

intensity; (10) spectralFluxV_sma3nz_amean: mean of the difference of the spectra of two consecutive 

frames in voiced regions, related to timbre in speech. 

GLM models, as shown in Figure 4B, indicated that the probable AD population speak quieter, with 
significantly lower mean (Z = -2.301, p = 0.021 < 0.05) and 80-th percentile (Z = -1.986, p = 0.047 < 

0.05) of loudness, and produced more nasal sounds, as reflected by a significantly higher F1 amplitude 

(Z = 2.151, p = 0.031 < 0.05) and a trend towards higher F3 amplitude (Z = 1.752, p = 0.080 < 0.1). 
Furthermore, as seen in Figure 4C, the GLM models suggested that changes in AD pathology were 

significantly different among the Spanish datasets and the other two datasets. However, there was no 

significant difference between the English and Greek datasets. This observation helps explain why the 
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model, trained on English data, exhibited better generalization to the Greek data but struggled to 

generalize well to the Spanish data. 

Error analysis, in both Greek (Figure 4D) and Spanish (Figure 4E) datasets, indicated that the model 

tended to classify controls with lower MMSE scores as probable AD and probable AD with higher 
MMSE scores as control. 

 

Figure 4. Model interpretation. * p < 0.05, ** p < 0.01, *** p < 0.001. (A) Ten features (y-axis) with 
the ten largest SHAP values. (B) Error bars showing Group effects (Z values, x-axis) on these top 10 ten 

features (y-axis), with the asterisks on the right indicating statistical significance. The center point 

indicates Z values and the orange bars display the confidence interval of 95%. (C) Boxplot comparing 
the differences between two groups across English (pink), Greek (blue), and Spanish (Green). Asterisks 

above the overarching lines indicate significance of the post-hoc paired sample T tests, corrected by 

False Discovery Rate (FDR). (D) Error analysis on Greek data with ANOVA test showing the effect of 

diagnosis, prediction correctness (True or False), and the interaction between these two factors. (E) Error 
analysis on Spanish data with ANOVA test showing the effect of diagnosis, prediction correctness (True 

or False), and the interaction between these two factors. 
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4.  Discussion 

In this study, the primary objectives were to build a speech-based model for AD detection that could be 

applied across different languages, was generalizable to future data, and interpretable. To accomplish 

this, the eGeMAPS v02 feature set was used and 69 features were selected from it as acoustic 
representations of the data to forward to an Extra Trees classifier. 

Results demonstrated that VoiceAD outperformed both the baseline model [27] and the model 

incorporating demographic data in the crosslingual task from English to Greek. This not only affirmed 
the utility of VoiceAD but also underscored the indispensable role of including speech data for effective 

AD detection. The findings suggest the feasibility of transferring an English- data-trained AD detection 

model to data in other languages, presenting a promising solution for underexploited languages with 

limited data availability. While the model demonstrated commendable F1 scores on English and Greek 
data, the lower scores observed on the Spanish dataset indicate the need for further investigation. 

Language difference alone may not be the predominant explanation, given the consistent performance 

on Greek data. Instead, task effect could be a potential factor – the Spanish dataset utilized a reading 
task (prepared speech based on speech comprehension), engaging distinct neurocognitive mechanisms 

compared to spontaneous speech production [29-30]. In contrast, both the English and Greek datasets 

employed picture description tasks to elicit language, albeit not with identical stimuli pictures. Future 
efforts should prioritize task uniformity to ensure the robustness and reliability of crosslingual models 

for AD detection. 

The combination of a low risk of overfitting, as observed from the learning curve, and high agreement 

among the constituent decision trees, as indicated by prediction variances and Cohen’s kappa, 
collectively suggests that VoiceAD is likely to maintain its performance when classifying future unseen 

data. This robustness is a crucial characteristic for the practical deployment of the model in real-world 

scenarios, where its effectiveness in handling new and unseen cases is essential for reliable and accurate 
predictions. In addition to its generalizability, the VoiceAD also exhibits high interpretability, which is 

another crucial aspect for clinical application. SHAP values revealed that the model primarily learned 

from features related to loudness, nasal sounds, creaky sounds, breathy sounds, and timber, which 

demonstrated significant alterations in the probable AD population in the employed datasets. 
Specifically, individuals with Alzheimer's Disease (AD) tended to speak more quietly and produce more 

nasal sound. This aligns with the neurobiological changes observed in AD pathology, such as 

disassociation between the auditory cortex and other cortical regions, especially meaning-making 
regions like the angular gyrus [25]. The changes in these acoustic aspects of speech could be task-

dependent rather than language-dependent, as argued above. Error analyses further indicated the 

cognitive basis of the model. Individuals with similar Mini-Mental State Examination (MMSE) scores 
across different groups, for example, controls with low MMSE scores, were more prone to 

misclassifications by the model. This observation implies that the model is effectively capturing 

cognitive aspects. 

High generalizability, interpretability, and cognitive basis together reinforced VoiceAD as a tool for 
detecting AD. Speech has been validated as a reliable indicator and potential mechanism for a diverse 

range of mental disorders including Parkinson’s disease [20], Huntington’s disease [31], schizophrenia-

spectrum disorders [32], and depression symptoms [33]. The potential application of acoustic analysis 
in detecting a range of mental disorders emphasizes the versatility and broader impact of automated 

speech analysis in healthcare. Such a model could potentially be implemented into software or a mobile 

application that accepts speech recordings obtained from specific tasks, such as picture description, as 
input. It would then provide an output indicating the risk of AD, computed from the probability of the 

subject being classified as probable AD. This innovative approach could offer caregivers and physicians 

an accessible tool for identifying potential cases of cognitive impairment and facilitate monitoring of 

cognitive decline in certain individuals. 
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5.  Limitations and future directions 

Despite the promising future implications, it is essential to acknowledge several limitations inherent in 

the study and model. Firstly, the datasets utilized in this study exclusively comprised probable AD cases. 

The definitive confirmation of AD typically requires autopsy or biomarker testing with cerebrospinal 
fluid markers such as Abeta 42 and P-tau proteins. Currently, there is no publicly available dataset with 

speech samples from confirmed AD cases. Future endeavors may explore access to private datasets to 

enhance the precision of AD detection. Secondly, the total number of participants in the English dataset 
amounts to 237. While this figure may not be considered small within the context of clinical speech 

corpora, it is still beneficial to explore ways of expanding the dataset size. Additionally, the model itself 

has room for improvement. Continuous refinement and enhancement of the model architecture and 

features could contribute to its overall accuracy. Future studies might explore advanced techniques and 
incorporate larger and more diverse datasets to further enhance the model's performance. 

6.  Conclusions 

This study followed the construction of a crosslingually generalizable and interpretable classifier 
capable of detecting Alzheimer's Disease (AD) from spontaneous speech. The classifier, initially trained 

on English data, demonstrated sustained performance when evaluated on Greek data. However, 

variations were observed when applied to Spanish data, which can be attributed to a task difference in 
data elicitation. VoiceAD, distinguished by its crosslingual applications, generalizability, and 

interpretability, has the potential to be implemented as an accessible screening tool to enable worldwide 

accessibility, especially for non-English speakers and those in low to middle-income populations. 

Appendix 
I tested the performance of twelve models using four feature sets. The twelve models are: linear support 

vector machine (L_SVM), support vector machine with radial basis function (R_SVM), decision tree 

(DT), random forest (RF), extra trees (ET), gradient boosting decision tree (GBDT), AdaBoost (Ada), 
K-nearest neighbors (KNN), naïve bayes (NB), linear regression (LR), linear discriminative analysis, 

and quadratic discriminative analysis. Supplementary Figure 1 displayed the comparisons on the 

performance across different classification algorithms. Feature sets include the compareE feature set 

with the spectral, cepstral, frequency, and voice quality subsets, the prosogram features revealing the 
prosodic profile of speech, the eGeMAPS v02 feature set, and the wav2vec2 embedding (w2v2). 

Supplementary Figure 2displayed the comparisons on the performance across different classification 

algorithms. 
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