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Abstract. As one of the most important algorithms, Fictitious Play lays the foundation of 

improving agents’ performance by anticipating adversaries’ strategies and making coping 

strategies. However, few applications of Fictitious Play have made due to its inefficiency when 

handling massive data. Recently techniques including Model-Based Reinforcement Learning 

and Q-learning pave way for enhancement of Fictitious Play. Different algorithms have been 

proposed in order to improve agents’ performance and efficiency based on Fictitious Play in the 

past few decades. This paper firstly summarizes Fictitious Play and other algorithms, followed 

by discussing some of the main variants based on Fictitious Play. Analysis of defects, including 

robustness and excessive calculation, are also presented in the paper.  
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1.  Introduction 

With an increasing requirement of game-theory algorithms recently, more and more work has been done 

in relevant fields, especially Self-Play algorithms. Self-Play algorithms include algorithms that are 

developed based on the original Fictitious Play (Brown et al., 1951). After the development over the 

past years, Self-Play has become a large, and prosperous field. Most Self-Play algorithms are based on 

Extensive Form Games, while former ones are applicable to Normal Form Games. Extensive Form 

Games are multiagent games, that involve agents’ sequential interactions. Extensive Form Games also 

involve a decision tree which describes a set of state 𝑆, a set of actions 𝐴, and agent’s action 𝑎 ∈ 𝐴 

under state 𝑠 ∈ 𝑆 [1].  

Self-Play algorithms are ideal when targeting at improving agents’ performance without much 

outside instructions. It allows agents to start from random policies, combat with itself in each iteration, 

and improve ability gradually. However, some deficiencies reside in Self-Play algorithms, since they 

rely on countless iterations and focusing on beating itself. For example, robustness of the agents and 

calculation amount are significant deficiencies. Over years of development, solutions have been derived 

to resolve these problems, and each of them has their unique merits.  

This paper begins with summaries of some basic and fundamental work, as well as presents of their 

relationship with relevant fields, and then discusses important Self-Play algorithms. Finally, the paper 

presents defects in the algorithms and their solutions. 

2.  Background  

Some important works lay foundations for a variety of Self-Play algorithms, including Markov Decision 

Process, Model-Based Reinforcement Learning, Q-learning, and Fictitious Play. This section briefly 
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summarizes the three algorithms and concepts, as well as presenting their relationship with other 

concepts.  

2.1.  Markov decision process 

A process satisfies Markov Property if each state of the process only depends on the state directly before 

it. Any process that has Markov Property is a Markov Process, and in which we can apply Markov 

Decision Process (MDP) to enact the best policy and choose actions. MDP consists of tuples 

(𝑆, 𝐴, 𝑃, 𝑅, 𝛾) , where 𝑆  denotes state, 𝐴  denotes action under the state, 𝑃 transition probability 

distribution, 𝑅  reward of transition from 𝑆  to 𝑆′ , and 𝛾  discount rate. State Value Function 

calculates the expected future revenue under a certain state, 𝑉 = 𝐸[∑ 𝛾𝑖𝑟𝑖|𝑠0 = 𝑠∞
𝑖=0 ]. Action Value 

Function denotes the expected future revenue under a certain state and action 𝑄 = 𝐸[∑ 𝛾𝑖𝑟𝑖|𝑠0 =∞
𝑖=0

𝑠 , 𝑎0 = 𝑎]. 

2.2.  Model-based reinforcement learning 

In contrast to Model-Free RL, Model-Based RL applies model to simulate environment. Models are 

created according to experience using tuple (S, A, R, S′), and stores current state, action, revenue gained, 

and the state after applying the action. Agents benefit from models by thoroughly know about the 

environment.  

Starting with a random policy, the agent interacts with the environment, records models, and stores 

them in pool M. In each iteration, agent trains f(s, a) to minimize the difference between anticipated 

state and actual state s. Agent also appends a new model (s, a, s′) to M every n steps. Figure 1 

illustrates the general idea [2].  

 

Figure 1. Model-Based RL. 

A successfully trained model set allows agent to have a traversal of all possible states and has a 

corresponding action to each of the states. However, Model-Based RL requires an inaccessible amount 

of data to train a good model, since all the trainings are based on datasets. Consequently, two other 

problems are generated: agents stuck in an attempt of re-exploring familiar environments and has no 

experience on unknown sections; significant problem of overfitting and less total rewards consequently. 

Adding a limit on iterations and compelling the agent to focus on less-familiar sections is proposed as a 

solution [3]. Moreover, combining Model-Based RL and Model-Free RL resolves the overfitting 

problem, since Model-Free RL allows agents to focus on future rewards [4]. 
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2.3.  Q-learning 

 
Figure 2. Q-Learning. 

Q-learning is a value-based method, and calculates Q-value based on MDP. Q-learning targets at 

traversing all possible states and recording the most ideal actions. Starting from a random policy, the 

agent constantly attempting different actions at each state. After having a Q-table, the agent chooses the 

best action at each state according to the table, measure its reward, and update Q-value. Figure 2 presents 

the general idea. Q-learning updates the table using function Q(s, a) ← Q(s, a) + α[R(s, a) +
γ maxa′ Q(s′, a′) − Q(s, a)]. However, Q-learning requires an inaccessible amount of calculation and 

attempts for the agent to construct an ideal Q-table, since it applies a “trial-and-error” method to choose 

actions. Consequently, Q-learning cannot be applied to solve problems in continuous environments, due 

to the countless possible states. Therefore, Continuous Q-Leaning [5] and Deep Q-Network are 

presented [6]. 

2.4.  Fictitious play 

The general idea of Fictitious Play [7] is to record adversaries’ strategies and make a coping strategy 

accordingly. Specifically, the agent chooses the best strategy based on other players’ average strategies, 

observes, and stores adversaries’ current strategy in the strategy set. Moreover, the agent also updates 

its own average strategy set.  

Fictitious Play is one of the original forms of other Self-Play and fictitious play algorithms, and 

inevitably has defects. For example, Fictitious Play is inefficient in solving Extensive Form Games. 

Besides, it is also limited to zero-sum and some constant-sum games. Since Fictitious Play relies Nash 

Equilibrium to resolve problems, it cannot guarantee best solutions.  

3.  Amelioration of Fictitious play 

The idea of Fictitious Play is not broadly applied until more improvements are made, because Fictitious 

Play can only be used in normal form games, which are generally less popular forms. and an excessive 

amount of calculation is required to train an ideal agent. However, the idea of recording and learning 

from opponents’ strategies has inspired various algorithms, which in turn are making the field of Self-

Play prosperous.  

3.1.  General fictitious self-play and neural fictitious self-play 

General Fictitious Self-Play (FSP) is an enhancement of Fictitious Play, which cannot be applied to 

Extensive Form Games. Similar to Fictitious Play, FSP also consists of two sections. Firstly, it records 

opponents’ strategies and uses the data to anticipate their current strategy. Secondly, it chooses a coping 

strategy based on its own past strategies. Finally, it updates all the strategy datasets. FSP is ameliorated 

based on Extensive-Form Fictitious Play in order that the algorithm can be adapted in various situations 
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and under different machine learning frames. Moreover, a data generator is also added to produce more 

general samples based on known datasets. Specifically, FSP attempts to mix the agents ’  average 

strategies with best response strategies, σk =  (1 − ηk)πk−1 − 1 + ηkβk, where σk is the sampling 

strategy, πk−1 is the agent’s average strategy in the former episode, βk is the best response strategy, 

and ηk is the coefficient of mixing the two strategies. [8] 

Neural Fictitious Self-Play (NFSP) is a further enhancement of FSP, so that neural networks and Q-

learning can be used to improve efficiency. Besides, ϵ − greedy method is also used in the data 

generator section of FSP. 

3.2.  δ Fictitious self-play 

δ Fictitious Self-Play (δ-FSP) focuses on improving opponent sampling based on how new the samples 

are. δ-FSP uses coefficient δ  to determine how many latest models are sampled while (1 − δ) 

determines how may earlier models are sampled. Specifically, setting δ = 1  allows the agent to 

concentrate on the latest models, and δ = 0 requires it to sample uniformly over the entire past models. 

Experiments proves that certain agents in some games require a larger value of δ since earlier models 

of opponents are not strong enough, whereas other games require smaller value of δ because either the 

models are generally constant or the training is aiming at improving the agent’s robustness. [9] 

3.3.  Prioritized fictitious self-play 

Prioritized Fictitious Self-Play (PFSP) aims at choosing the best-fit opponents for the agent. Instead of 

traversing the entire model set, or simply choosing between the latest and the earlier models, PSFP 

chooses models based on the probability of beating a model. Firstly, the agent A determines the 

probability of beating the models in dataset D. Then, A chooses a certain model M from D with 

probability p =
f(ℙ[A beats M])

∑ f(ℙ[A beats m])m∈D
 , where f is certain function, and is determined as f = x(1 − x) 

by Oriol et al. in order to help the agent to focus opponents at similar level. [10] 

4.  Problems and solutions 

Similar problems lie in each generation of Self-Play, and different algorithms have proposed distinct 

solutions. Most salient problems include requirement of robustness, and excessive calculation amounts. 

This section analyzes the two problems in general, and then presents how does each algorithm solves 

them.  

4.1.  Defect of robustness 

Robustness denotes how universal a set of strategies is. Algorithms that mainly rely on sample sets are 

especially prone to have defects in robustness since they only depend on certain samples that cannot 

necessarily represent the whole. Similarly, Self-Play algorithms also have this problem because of their 

dependence on model samples. Most of the Self-Play algorithms improve the performance of agents by 

requiring them to beat model samples. However, in some games there is no universal strategies that 

guarantee agents’ victories over most opponents. Consequently, it is important for the algorithm to 

adjust agents’ strategies so that they do not focus on only one opponent. [11] 

Approaches targeting at improving robustness include using noisy stochastic gradient updates and 

mixing best response strategy with average strategies. NFSP uses ϵ − greedy to allow agents to choose 

from strategies, besides, it also adds random exploration to impact the response strategy with a random 

factor. FSP uses coefficient η to set the mixture of average strategy and best response strategy.  

4.2.  Excessive calculation 

Excessive calculation is a significant defect in most Self-Play algorithms, because of their reliance on 

repetitive combats with past models. For example, one great problem of Fictitious Play is too much 
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calculations, and hence inapplicable in Extensive Form Games. The general idea of reducing 

computations is to focus on certain opponents, instead of traversing all of them. 

One of the most important solutions is put forward by PFSP. It uses function f and probability ℙ, 
which determines the possibility of beating a certain model, to reduce calculation amount. Specifically, 

PFSP chooses which category of models the agent focuses on by changing f. This allows agent to 

concentrate on either easier or harder opponents rather than the entire model set. Besides, δ-FSP solves 

the calculation deficiency by choosing from either latest or earlier models.  

5.  Conclusion 

This paper firstly discusses the basis of Self-Play algorithms, including MDP, Model-Based RL, Q-

learning, and Fictitious Play. Then the paper summarizes major Self-Play algorithms. Finally, 

discussions of defects and solutions are included. Future ameliorations will be achieved by learning 

from other fields and introduce algorithms to Self-Play. For example, Deep Q-learning, as an 

enhancement of Q-learning by introducing Deep Neural Network, can be taken into consideration and 

help to improve sample efficiency.  
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