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Abstract. Federated learning allows multiple local private clients to collaborate on training the 
same model without sharing each client's private data. It can achieve collaborative training 

between users while protecting data privacy and security. Therefore, it is advocated for use in 

the fields of Internet of Things, Internet of Vehicles, etc. There are security issues in the 

transmission process of federated learning models. How to ensure data privacy during local data 

collection, local model parameter transmission, model aggregation and performance testing 

while maximizing the use of private data is a question that people have been exploring. This 

paper proposes a DDS-based FL framework (FL-DDS) to achieve secure transmission of model 

parameters. The client and server are used as nodes in the DDS security domain, and the DDS 

data distribution mechanism is used to transmit model parameters. Through the DDS topic-based 

publish-subscribe mechanism, the global model and local model are transmitted through the DDS 

topic. At the same time, the DDS authentication component, access control component and 

encryption component are used to achieve domain-level security and intra-domain security of 
model transmission. Experiments show that (FL-DDS) can protect the privacy of model 

parameters without affecting communication performance. 

Keywords: Deep learning, Data distribution service, Federated learning, parameter transmission 

1.  Introduction 

Big data and artificial intelligence, as data-driven technologies and important engines for developing 

new productivity, are widely used in multiple industries such as the Internet of Things, smart 
manufacturing, medical care, and transportation. Data has in fact become a new type of asset. As data 

security and user privacy issues become more and more difficult, the potential value of data has become 

increasingly important. How can we conduct large-scale data analysis and computing without leaking 

data to the outside world? Federated learning (FL) is a breakthrough technology in distributed machine 
learning. It allows many clients to jointly train the same model without sharing original local privacy 

data. It is a new privacy computing strategy that aims to solve data decentralization and data privacy 

issues. 
However, the FL model parameters are vulnerable to external or internal attacks when they are 

transmitted, making the model transmission process unsafe. Recent studies have shown that although 

participants in FL only exchange model weight data instead of local private data, the possibility of 
participants' privacy being compromised still exists. Although the original local privacy data remains on 
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the local client, Parameters of the interaction model between the client and the server may inadvertently 

leak sensitive information. These model updates, if intercepted or analyzed, may be reverse engineered 

to infer the properties of the underlying data, posing significant privacy risks [1-3]. 

From the perspective of model transfer, we design the Federated Learning DDS framework (FL-
DDS) based on the DDS security component specifically for the current federated learning architecture. 

We use the authentication, access control, data integrity and confidentiality mechanisms provided by 

the DDS security component to achieve secure distribution of global model parameters and secure 
upload of local models in federated learning, ensuring the accuracy of training and the privacy of all 

participants. Specifically, our contributions are as follows:  Implement federated learning through the 

DDS distributed computing framework. Enable the DDS security mechanism to implement federated 

learning model parameter transmission. Ensure the security of model transmission without losing 
accuracy 

The rest of this paper includes: Section II explains and summarizes the research background of key 

technologies such as FL, DDS, and ROS. Section III elaborates on the algorithm design of FL-DDS. 
Section IV introduces the setup and experimental results of the FL-DDS evaluation experiment. Finally, 

in Section V, we summarize and evaluate our work on FL-DDS and look forward to the potential of the 

FL-DDS framework. 

2.  Background  

2.1.  Federated Learning 

The FedAVG algorithm is a classic algorithm in federated learning [4]. Its training framework is shown 

in Figure 1.  

Server Client1 Client2

Server Client1 Client2

1.Send globalModel

1.Send globalModel

2.Local training

2.Local training3.localModel upload

3localModel  upload

4.aggregation

1.Send globalModel(next round)
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Figure 1. The FedAvg framework 

There are four steps to it. The globalModel is initialized and sent to all local clients by the central 
server during the first stage, known as startup. The next step is local training, where each local client 
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independently trains the model using local private data and generates local model updates after a 

specified local epoch training cycle. During the local model upload stage, the local client then uploads 

the locally adjusted model parameters to the central server. The global aggregation stage is the last one. 

During this phase, the global server updates the globalModel parameters and broadcasts them to all 
clients. The weighted average of all the localModel updates it has received is then calculated. The model 

is iterated through this process until convergence. 

Various techniques have been proposed to address the privacy issue. Differential privacy (DP) is one 
of the most prominent approaches, which, before to sharing model updates with the central server, adds 

controlled noise [5]. This ensures that the contribution of any single client's data to the overall model 

remains indistinguishable, thereby protecting individual privacy. Another method that permits 

computation on encrypted data is homomorphic encryption that allowing model updates to be securely 
aggregated without exposing the raw data. 

Secure multi-party computing (SMPC), which allows many parties to cooperatively compute 

functions based on their inputs while maintaining the privacy of those inputs, is another facet of FL 
privacy security. By dividing the data into shares and distributing them to multiple parties, SMPC 

ensures that no single party has access to the complete dataset, thereby enhancing privacy. 

Additionally, federated learning systems can employ traditional secret sharing (SS) schemes, where 
a central server aggregates model updates in a way that prevents exposure of any individual client data 

[6]. This technique, combined with a secure aggregation protocol, ensures that model updates are 

combined without revealing individual contributions. 

In terms of model communication, a unique distributed quantized gradient algorithm was proposed 
by Jun Sun, Tianyi Chen, and others to solve the federated learning problem of communication 

efficiency. The adaptive communication of quantized gradients is the feature [7]. To update the model 

parameters, the global gradient is obtained by summing up all of the local gradients. Quantizing 
gradients and avoiding quantized gradient communications with less information by reusing prior 

gradients is the main concept behind conserving communication from workers to servers. Other works 

focus on the decentralized federated learning framework and propose algorithm called GossipFL, which 

enables each client to communicate with only one peer with a highly sparse model [8]. Additionally, 
these works suggest a matrix generation algorithm that can more efficiently use bandwidth resources 

while maintaining unity. 

2.2.  Data Distribution Service 
The Object Management Group (OMG) proposed a standard for the Data Distribution Service (DDS), 

making DDS implemented according to this standard interoperable [9]. A Service Plugin Interface (SPI) 

architecture with particular plugins and APIs is defined by DDS-Security. The five plugins that make 
up DDS-Security are Data Tagging, Logging, Encryption, Access Control, and Authentication. 

The SPI architecture supports multiple authentication schemes, and the default plugin is "DDS: Auth". 

For authentication and key exchange, this plugin makes use of a public key infrastructure that includes 

X.509 certificates, RSA or DSA, and Elliptic Curve Diffie-Hellman. Access Control leverages signed 
XML documents and PKI to define domain protection and participant permissions. The required security 

plugin "DDS: Crypto" lists the supporting cryptographic techniques, which include 128- and 256-bit 

AES keys for encryption, RSA, elliptic curve keys, and SHA-256 for digital signatures. 
Participants in the domain are identified by means of authentication. Limitations on DDS-related 

operations are enforced via Access Control. Hashing, encryption, and signature are all managed by 

encryption. Logging allows security related event monitoring, and data tagging adds labels to data 
frames to prevent tampering.to the DDS specification, the first three plugins are mandatory. 

Authentication, Access Control, Encryption, and Logging contribute directly to security, while Data 

Tagging enhances security indirectly by enabling access control. 
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2.3.  Robot Operating System 2 

Robot Operating System 2, or ROS2, is the next-generation framework for developing robots which is 

created to get over the drawbacks of its predecessor, ROS1 [10]. It offers real-time performance, cross-

platform interoperability with Windows, Linux, and macOS, and strong support for distributed systems. 
Because ROS2 is built on top of DDS (Data Distribution Service), it guarantees dependable, low-latency 

data sharing, which is necessary for sophisticated robotic applications. 

Better security, compatibility for multi-robot systems, and increased middleware flexibility—which 
lets developers use the communication libraries of their choice—are some of ROS2's standout features. 

Its modular architecture makes maintenance and the integration of new features easy. Along with 

scalability, ROS2 is ideal for a wide range of applications, from small-scale hobby projects to massive 

industrial robots. More deterministic and real-time capabilities are built into the system, which is 
essential for applications that need exact timing and synchronization. All things considered, ROS2 is a 

huge step forward in the robotics industry, offering a more effective and adaptable toolkit for creating 

complex robotic systems. 

3.  Federated learning based on DDS middleware 

3.1.  Problem Statement 

Let 𝑁 be the number of local participants (𝑃1 − 𝑃𝑁). 𝐷𝑖 is a local dataset for 𝑃𝑖 . With the aid of a 
central server, we hope to develop a machine learning model from the dataset without transferring raw 

data. Training's objective is to resolve: 

𝑎𝑟𝑔min
𝑤

ℒ(𝑤) = ∑
|𝐷𝑖|

|𝐷|
𝐿𝑖(𝑤)

𝑁

𝑖=1
 (1) 

Here 𝐿𝑖 (𝑤)is the empirical loss of 𝑃𝑖 . 

3.2.  The flow of the FL-DDS algorithm 

The security component based on data distribution services (DDS) realizes the security of the Federal 

average (FedAVG) global model and the security upload of local models, which mainly involves the 
following steps. First, use DDS's security strategy for global models. On the server side, through the 

DDS authentication, access control, and data encryption functions to ensure that the global model can 

only be accepted by the authorized client. After receiving the model, the local client trains a new model 
locally and uploads the trained model. During the upload process, DDS's security components pass data 

integrity verification and encryption transmission to ensure the privacy and immutability of local model 

data during the transmission process. The server receives local models, average federal aggregation, and 
the next round of global models. This implementation method based on DDS security components 

ensures the confidentiality, integrity and controllability of weights transmission in the federal learning 

circuit, and effectively prevent the risk of data leakage and tampering. Particularly separated into the 

subsequent stages: 

1. Global Initialization. In server -side initialization globalModel parameter 𝑤0 , local server 

initialization local data 𝐷ⅈ, initialization of all participants' certificates and keys, 

2. Client selection. Each process of iteration, the central server chooses a portion 𝑆𝑡 ⊆ {1,2, … , K} 

where server is selected from all 𝐾 clients. where |𝑆𝑡|  =  𝐶 ∙ 𝐾 (0 < 𝐶 ≤ 1). 
3. the model sends. The server is through DDS topic: GlobalModel sends global model parameters 

𝑤𝑡 , local client subscribes to DDS topic: GlobalModel receives global model parameters 𝑤𝑡 , and 
initialize local models: 

4. Local training. Each selected client 𝑘 ∈ 𝑆𝑡  receives this round globalModel parameter 𝑤𝑡  from the 

server, and after that uses its local data 𝐷𝑘 for local client training. local client 𝑘 uses its private 

data 𝐷𝑘 to learn rate 𝜂 for 𝐸 round random gradient decrease (SGD), update model parameters: 

𝑤𝑘
𝑡,0 = 𝑤𝑡 . For each local update 𝑖 ∈ {1,2, … , 𝐸}and each local batch 𝑏 ⊆ 𝐷𝑘 :  𝑤𝑘

𝑡,𝑖 = 𝑤𝑘
𝑡,ⅈ−1 −
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𝜂𝛻ℓ(𝑤𝑘
𝑡,ⅈ−1;  𝑏). Among ℓ(𝑤𝑘

𝑡,ⅈ−1;  𝑏) indicates the loss function on the batch 𝑏. After the 𝐸 round 

local training, the client 𝑘 gets the updated local client model widgets 𝑤𝑘
𝑡+1 

5. Local model upload. Each client 𝑘 publishes its updated local client model widgets 𝑤𝑘
𝑡+1 to the 

LocalModel topic, and the server subscribes to the LocalModel topic and stores it. 

6. Global aggregation. After the server receives the localModel parameters of all selected client 𝑘 ∈
𝑆𝑡 , the globalModel parameters are updated according to the number of samples of each client𝑛𝑘 

weighted the average: 𝑤𝑘
𝑡+1 =

1

𝑁
𝛴𝑘 ∈ 𝑆𝑡𝑛𝑘𝑤𝑘

𝑡+1. Where 𝑁 = 𝛴𝑘 ∈ 𝑆𝑡 ,and  𝑛𝑘  shows the client's 

total number of samples. 
Through the above steps, while ensuring data privacy, the goals of multiple clients to coordinate the 

global model. 

Server GlobalModel

GlobalModel Update

LocalModel

LocalModel Update

Client LocalModel

LocalModel Update

Client LocalModel

LocalModel Update

Client

DDS Topic

DDS Topic

DDS Topic
DDS Topic DDS Topic

DDS Topic

 

Figure 2. The FL-DDS framework 

Figure 2 shows the FL-DDS framework, where DDS TOPIC opens the security function to ensure 
the security of data transmission. The server -side initialization globalModel widgets are sent to each 

local client through DDS security TOPIC. Each selected client is trained on local data after receiving 

the globalModel widgets, and localModel widgets are updated. The updated local client model widgets 
are uploaded to the central server through the security TOPIC of DDS [11]. After the server receives 

localModel parameters from multiple clients, the server is weighted average to update the globalModel 

parameter. 

4.  Experiment 

4.1.  Experimental Setup 

This paper implement the FL-DDS framework based on the most classic federated learning method 

FedAvg. This paper conducted experiments on the Cifar10 dataset, which is an image classification 
dataset commonly used in computer vision research and deep learning model training. It includes 60,000 

images, each of which is 32x32 pixels in size and divided into 10 categories. As the basis encoder, we 

employ a CNN network with two 5x5 convolutional layers. 
To implement FL-DDS machine learning training, we employ PyTorch [8]. For local training, using 

a 0.01 learning rate, the SGD stochastic gradient descent optimizer is used. SGD weight decay is set to 

0.00001 and SGD momentum is set at 0.9. There is a batch size of 64. There are ten local epochs in total. 

There will be one hundred rounds of conversation. 
For local data, we randomly and evenly divide the CIFAR-10 dataset into 5 parts to construct 

independent and identically distributed data partitions. Specifically, the built-in method of PyTorch is 

used to randomly divide the dataset into 5 non-overlapping new datasets of a given length as local data. 
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To develop FL-DDS's model transfer component, we use ROS2. DDS is used by ROS2 for publish-

subscribe communications and distributed service discovery amongst its nodes. The most recent 

development version of ROS is rolling. Additionally, security protections for model transfer are 

provided by SROS2. For every DDS implementation that supports it, the ROS client library contains a 
collection of tools and functions called SROS2, which is used to enable DDS security features. We 

decide to use FastDDS, the default DDS middleware, as the actual DDS implementation out of all the 

middleware implementations available for ROS2 DDS. 
Regarding the studies, they were all carried out on an Ubuntu 20.04 host that included a 32GB RAM, 

a Micron NAND flash memory (TLC) 512GB disk, and an Intel i7 12700KF processor. Nvidia RTX 

3060 was the GPU utilized for processing accelerated by machine learning. 

4.2.  Accuracy 
Figure 3 shows the accuracy of FL-DDS trained on the cifar10 dataset for 100 rounds under 5 local 

clients. 

 

Figure 3. Model Accuracy 

In the first few rounds of training, the accuracy increased rapidly, from about 0.50 to more than 0.70. 

This shows that the model quickly learns effective features in the early stage, and the accuracy is 

significantly improved. Between 10 and 30 rounds, the accuracy continues to rise slowly and gradually 

stabilizes. During this period, the model further optimized and adjusted parameters through multiple 
rounds of local training and global updates, resulting in continuous improvement in performance. After 

30 rounds, the accuracy rate stabilizes and remains between 0.70 and 0.75, with small fluctuations. This 

indicates that the model has reached a good convergence state, and further training will bring limited 
performance improvement. As can be seen from the Model Accuracy figure, the globalModel reaches a 

stable convergence state around 30 rounds, indicating that using the FL method to train the CNN model 

on the CIFAR-10 dataset is effective. The final model accuracy is between 0.70 and 0.75, showing the 
model's good classification ability on the CIFAR-10 dataset. The experimental results verify the 

effectiveness and reliability of FL-DDS on distributed data sets. when the data is uniformly and 

independently disseminated (IID), the model can also achieve higher accuracy faster. 

Figure 4 shows the changes in test loss (Test_Loss) of the model under different global rounds 
(global_round) when using FL-DDS to train the CIFAR-10 data set. 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/86/20241552 

88 



 

 

 

Figure 4. Test Loss 

In the first few rounds of training, the test loss drops significantly, from about 1.5 to close to 1.0. 

This shows that the model can quickly learn effective features in the early stage, thereby significantly 

reducing the loss. Between rounds 10 and 40, test losses gradually increase. This may be due to the 
problem of uneven client data distribution or unstable model parameter updates in federated learning. 

After 40 rounds, the test loss continued to rise, eventually reaching about 4.5. This indicates that the 

model has problems such as overfitting or too high a learning rate during the later training process, 
resulting in a decline in model performance. 

5.  Conclusion 

Through experiments on the independent and identically distributed cifar-10 dataset, we evaluated the 

performance of the FL-DDS algorithm and tested the security overhead of the model transmission. The 
experimental results show that FL-DDS, as a distributed federated learning framework, ensures the 

privacy of model transmission through the DDS security component without affecting the 

communication performance. 
In general, the future prospects of FL-DDS are very broad, and future experiments can be improved 

in many aspects, such is achieving completely decentralized federated learning by utilizing the DDS 

middleware's decentralized features, and other federated learning frameworks built upon the DDS 
middleware. FL-DDS may be used to test its viability and usefulness in many domains by applying it to 

certain situations like smart manufacturing, smart transportation, and smart healthcare. 
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