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Abstract. Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving 

collaborative machine learning. However, the challenge of data imbalance, exacerbated by the 

non-IID nature of distributed datasets, significantly impacts model performance and fairness in 

FL systems. This paper investigates the implementation and evaluation of simple resampling 

techniques to address data imbalance within the FL framework. Using the MIMIC-III healthcare 

dataset, a simulated FL environment with ten virtual clients was created to test various 

resampling methods: SMOTE, random undersampling, and a hybrid approach. The study 

employed logistic regression models and evaluated performance using common and novel FL-

specific metrics. Experimental results demonstrate that the hybrid resampling technique 

significantly outperforms other methods, improving the F1-score by 13.1% and reducing 

communication rounds by 25.3%. Statistical analyses, including repeated measures ANOVA and 

hierarchical linear modeling, confirm the robustness of these findings across varied client data 

distributions. This research provides a replicable framework for addressing data imbalance in 

FL, contributing to enhanced model fairness and efficiency in privacy-sensitive applications.  

Keywords: Federated Learning, Data Imbalance, Resampling Techniques, SMOTE, Non-IID 

Data. 

1.  Introduction 

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on 

decentralized datasets while preserving data privacy [1]. This approach is particularly relevant in areas 

like healthcare, finance, and mobile apps where bringing all the data together to train a model does not 

work well because there are strong privacy rules and concerns about who owns the data. By allowing 

several clients (like mobile devices, hospitals) to work together on training a shared model without 

having to exchange their raw data with each other directly, FL provides a way of doing machine learning 

that keeps privacy safe instead of using central systems. 

Despite its potential, FL faces significant problems, especially when handling the mixed and often 

uneven nature of data seen in real life. Data imbalance is a common problem in many areas; it happens 

when one class has way more instances than other classes, which can lead to biased model training [2]. 

This difference can cause uneven model training, where the model gets very good results for the bigger 

class but does not do well with the smaller class. Often, this smaller class is very important in things 

like finding fraud or diagnosing medical problems. 
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The challenge of data imbalance is further exacerbated in FL by the non-IID (non-independent and 

identically distributed) nature of data across different clients. Every client might have its own special 

type of data with different class proportions, making a global model that shows the biases from the most 

common client datasets. As a result, solving data imbalance in FL needs methods that not only make the 

overall data more balanced but also consider how spread out and different the data is.  

This paper investigates the application of simple yet effective resampling techniques to address data 

imbalance within the FL framework. The research primarily focuses on implementing and evaluating 

various resampling strategies, such as oversampling, undersampling, and combinations of these methods, 

in a simulated FL environment. A thorough analysis is conducted to examine the effects of these 

techniques on model performance, particularly their influence on learning efficiency (convergence 

behavior) and communication resource utilization. This study presents a detailed experimental design 

to showcase practical methods for enhancing model fairness and robustness in FL systems. 

Key contributions of this work include:  

a) Innovative Application of Resampling Techniques: Traditional resampling methods are adapted to 

the unique constraints of federated learning, ensuring data privacy and local autonomy. 

b) Enhanced Learning Efficiency: The proposed approach demonstrates significant improvements in 

model convergence and communication efficiency, reducing the computational and data transfer 

overhead in FL systems. 

c) Practical Implementation Framework: A replicable experimental setup and methodology are 

provided, paving the way for future research and applications in privacy-preserving and equitable 

machine learning. 

2.  Related Research 

FL has witnessed significant research interest due to its ability to enable privacy-preserving 

collaborative learning from distributed data sources. However, the specific challenges posed by 

imbalanced data in FL remain an active area of investigation. Several studies have shed light on the 

complexities introduced by data imbalance in FL and proposed tailored solutions to mitigate these 

challenges. 

Tang et al. made detailed research about how to put imbalanced learning techniques into the FL 

framework [3]. They noticed that usual resampling methods could not fit directly in the decentralized 

and privacy-limited environment of FL, so they suggested a fresh data resampling plan named 

Imbalanced Weight Decay Sampling (IWDS). This strategy attempts to change the sampling 

probabilities of data instances while training by considering their class labels. By giving more 

importance to samples from minority classes, IWDS motivates the model to concentrate on learning 

about these less represented groups. This method helps in reducing bias towards majority classes. They 

showed their experiment results that data resampling can speed up training process in FL, but it might 

make the model less accurate for local datasets if not done with care and attention. 

Building on this idea, Oztoprak and Hassanpour introduced an alternative method to manage 

imbalanced datasets in FL [4]. They proposed dynamic parameter adjustments during training, which 

can overcome the limitations of static resampling techniques. Unlike static approaches, which might 

struggle to adapt as data distributions change during the FL process, their method involves adjusting the 

learning rate or weights associated with different classes dynamically during model updates. This 

dynamic adjustment helps the model better handle data imbalances, preventing it from becoming biased 

towards the majority class. Their results demonstrated significant improvements in model accuracy 

compared to traditional FL methods, underscoring the effectiveness of dynamic adjustment techniques 

in managing data imbalance. 

Similarly, a comparative study by Elsobky et al. [5] evaluated the performance of six different 

resampling techniques: random oversampling, Synthetic Minority Over-sampling Technique (SMOTE) 

[6], random undersampling, near miss, SMOTE-Tomek, and SMOTEEN. The study found that 

SMOTEEN, a hybrid resampling technique that combines SMOTE with Edited Nearest Neighbors 

(ENN), consistently outperformed other techniques across various performance metrics, demonstrating 
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the effectiveness of hybrid resampling techniques in improving classification performance on 

imbalanced datasets. 

While resampling techniques have shown promise in addressing data imbalance in centralized 

machine learning, their direct application to FL poses unique challenges due to the distributed nature of 

data and the necessity of preserving data privacy. 

To bridge this gap, Dolaat et al. investigated the application of data augmentation methods such as 

Generative Adversarial Networks (GANs) and SMOTE in FL for medical image analysis; they focused 

on the problem of data imbalance [7]. Their study revealed that GANs, which produce artificial images, 

along with SMOTE that generates synthetic samples through interpolation, can increase global model's 

precision with reduced communication rounds. The study emphasizes the efficiency of these techniques 

in handling data imbalance in privacy-sensitive fields such as medical imaging. 

Expanding on these methods, Wang et al. presented a clustered Federated Learning framework that 

uses weighted model blending to manage data imbalance in customers with non-IID data [8]. This 

method arranges clients into clusters according to their similar aspects, lessening the effect of client 

dissimilarity. The weighted aggregation method uses different weights for each client's data, adjusting 

the impact of their information on the global model. This makes sure that all clients contribute more 

equally in creating the final result. The framework showed quicker coming together and higher precision 

compared to regular FL methods, showing the usefulness of clustering and weighted aggregation for 

handling data imbalance. 

The Astraea, a self-balancing FL framework for mobile systems by Duan et al., blends the Z-score-

based data augmentation with multi-client rescheduling technique [9]. This framework balances local 

datasets by producing synthetic samples for less common categories and improving client involvement 

according to both data equilibrium and model efficiency. Astraea demonstrated enhancements in 

precision and decreased communication expenses, emphasizing its efficacy in dealing with data 

imbalance via local augmentation and client scheduling strategy. 

Despite the advancements made by these studies, they also present certain limitations. For instance, 

IWDS by Tang et al. might compromise local model accuracy if not meticulously managed. Oztoprak 

and Hassanpour's dynamic parameter adjustments, while effective, can add complexity to the training 

process. Hybrid techniques like SMOTEEN, as studied by Elsobky et al., though powerful, require 

careful balancing of oversampling and undersampling to avoid overfitting and information loss. Dolaat 

et al. and Wang et al. highlight innovative approaches but focus predominantly on specific applications, 

such as medical imaging and clustered client environments, which may not generalize well across 

different FL scenarios. Furthermore, Astraea introduces additional overhead through its data 

augmentation and rescheduling mechanisms, which might limit its scalability. 

In contrast, the approach proposed in this study aims to leverage the strengths of these methodologies 

while addressing their shortcomings. By implementing and evaluating simple yet effective resampling 

techniques locally within each client's environment, this study ensures that data privacy is maintained 

without compromising on model accuracy. The focus on logistic regression, a model known for its 

interpretability and efficiency, further contributes to the practicality and applicability of the proposed 

methods across various FL scenarios. This study's contribution lies in demonstrating the feasibility and 

effectiveness of resampling techniques in a federated learning context, offering a robust framework that 

balances local and global model performance while preserving data privacy. 

3.  Methods 

Figure 1 below provides a comprehensive flowchart of the entire process.  
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Figure 1. Flowchart of the Experimental Procedures (Picture credit : Original) 

3.1.  Dataset Selection and Preprocessing 

For this study, the publicly accessible MIMIC-III (Medical Information Mart for Intensive Care III) 

dataset, hosted by PhysioNet, was selected [10]. MIMIC-III contains extensive medical data from a large 

number of ICU patients, encompassing demographic details, vital signs, laboratory results, medications, 

and diagnostic codes. The dataset is particularly known for its class imbalance, especially in outcomes 

such as patient mortality and specific diagnoses, making it an ideal candidate for simulating realistic 

federated learning scenarios. 

To prepare the data, continuous variables were normalized using min-max scaling: 

 𝑥′ =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
 (1) 

Where 𝑥 is the original value, and 𝑥′ is the normalized value. This step ensures that all features are 

on a comparable scale, which is crucial for the convergence of the logistic regression model. Categorical 

variables were transformed into a binary format appropriate for machine learning algorithms using one-
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hot encoding. The dataset was then split into an 80-20 ratio for training and testing, ensuring that the 

class imbalance was preserved across both subsets to reflect real-world conditions. 

3.2.  Resampling Techniques 

To address data imbalance at the client level, the following resampling strategies were implemented, 

applied locally to preserve data privacy: 

d) Oversampling: Minor class instances were duplicated within each client’s local dataset until parity 

with the major class was achieved. 

e) Undersampling: Instances of the major class were randomly removed to match the number of minor 

class instances. 

f) Hybrid Resampling: A combination of oversampling the minor class and undersampling the major 

class to create a balanced dataset while trying to minimize information loss. 

Each resampling method was applied locally at each client to preserve data privacy and autonomy, 

avoiding the transmission of raw data or resampled datasets across clients. 

3.3.  Model Selection and Training 

A logistic regression model was selected due to its simplicity and interpretability, which are crucial in 

healthcare applications where model transparency is paramount [11]. Compared to more complex 

models like neural networks or ensemble methods, logistic regression offers several advantages in the 

context of federated learning. It requires less computational resources, which is beneficial for clients 

with limited processing power, and its linear nature allows for easier interpretation of feature importance. 

Furthermore, the model's simplicity facilitates faster convergence in federated settings, reducing 

communication overhead between clients and the central server [12]. These characteristics make logistic 

regression particularly suitable for privacy-sensitive and resource-constrained federated learning 

environments. The logistic function used in the model is defined as: 

𝜎(𝑧) =
1

1+𝑒−𝑧
                                                                   (2) 

Where 𝑧 = 𝐰⊤𝐱 + 𝑏. 

The loss function for the logistic regression, used to evaluate model convergence, is the binary cross-

entropy: 

𝐿(𝐰, 𝑏) = −
1

𝑁
∑  𝑁
𝑖=1 [𝑦𝑖log⁡(𝜎(𝑧𝑖)) + (1 − 𝑦𝑖)log⁡(1 − 𝜎(𝑧𝑖))]                          (3) 

Each client trained their local model on their respective datasets—both resampled and original. Local 

models were trained using a batch gradient descent algorithm. Hyperparameters, such as the learning 

rate and batch size, were optimized based on preliminary experiments to ensure efficient and effective 

training. 

3.4.  Federated Averaging 

After local training, model weights were averaged to produce a global model using the federated 

averaging formula: 

𝐰global⁡ =
1

𝐾
∑  𝐾
𝑘=1  𝐰𝑘

𝑏global⁡ =
1

𝐾
∑  𝐾
𝑘=1  𝑏𝑘

                                                           (4) 

Where K is the total number of clients. 

The convergence of the global model was monitored using the change in loss over successive rounds: 

 Δ𝐿 = |𝐿𝑡 − 𝐿𝑡−1|                                                               (5) 
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4.  Experimental Setup and Evaluation 

4.1.  Environment Setup 

To create a realistic federated learning environment, the PySyft framework, specifically designed for 

privacy-preserving machine learning, was utilized. This framework enables the simulation of federated 

learning with virtual clients, ensuring data privacy and security during the training process. An 

environment with ten virtual clients was simulated, each representing a different healthcare institution 

with unique data distributions. These data distributions were non-IID (non-independent and identically 

distributed) to reflect the variability and heterogeneity typically found across different institutions. 

Technical specifics included the use of encrypted data transmissions using Secure Sockets Layer 

(SSL) protocols to secure the communication between clients and the central server. Secure multi-party 

computation (SMPC) techniques were employed to ensure that the model parameters were updated 

without revealing any sensitive data. Specifically, the Paillier cryptosystem was used for encrypting 

model updates, which allows for homomorphic operations on encrypted data. 

The experimental environment was constructed to simulate a realistic federated learning scenario 

using the MIMIC-III dataset, hosted by PhysioNet. The dataset includes extensive medical data from 

ICU patients, featuring a pronounced class imbalance which is ideal for this study. The environment 

setup involved the following components: 

• Hardware and Software: Experiments were conducted on a server with an Intel Xeon processor, 

64GB RAM, and an NVIDIA Tesla V100 GPU. The PySyft framework was used to simulate the 

federated learning environment. 

• Clients: Ten virtual clients were created to represent different healthcare institutions. Each client had 

access to a subset of the dataset, with non-IID data distributions to reflect real-world variability. 

• Data Preprocessing: Continuous variables were normalized using min-max scaling, and categorical 

variables were one-hot encoded. Imputation of missing values was performed using the median for 

continuous variables and the mode for categorical variables. Outliers were addressed through the z-

score method. 

• Resampling Techniques: Implemented locally at each client, the resampling strategies included 

SMOTE for oversampling, random undersampling, and a hybrid approach combining both methods. 

4.2.  Performance Evaluation 

The performance evaluation of the implemented resampling techniques in the federated learning 

environment was done by using a wide group of measurements and statistical examination methods. 

This approach ensures a thorough understanding of the effect of every method on model's effectiveness, 

reaching convergence and communication efficiency. 

The following metrics were used to assess model performance: 

a) Accuracy: Overall correctness of the model's predictions. 

b) Precision: The ratio of true positive predictions to the total number of positive predictions. 

c) Recall: The ratio of true positive predictions to the total number of actual positive instances. 

d) F1-score: The harmonic mean of precision and recall. 

e) Area Under the Receiver Operating Characteristic Curve (AUC-ROC): A metric to evaluate the 

model's capacity to differentiate between classes. 

Particular importance was given to the performance metrics for the minority class, as they are very 

significant in medical diagnostics. Two metrics specific to federated learning were also presented: 

f) Federated Learning Convergence Rate (FLCR): Measured as the number of communication rounds 

required to reach a predefined convergence threshold. 
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g) Communication Efficiency Index (CEI): Calculated as the ratio of model performance 

improvement to the total data transmitted during training. 

4.2.1.  Experimental Results Table 1 presents the performance metrics for each resampling method 

across all clients:  

Table 1. Metrics for each resampling method 

Method Accuracy Precision Recall F1-Score AUC-ROC 

No Resampling 0.812 0.783 0.651 0.711 0.842 

SMOTE 0.843 0.821 0.752 0.785 0.891 

Undersampling 0.791 0.762 0.703 0.731 0.863 

Hybrid 0.857 0.836 0.774 0.804 0.912 

 

The results indicate that the hybrid approach consistently outperformed other methods across all 

metrics, with notable improvements in recall and F1-score for the minority class.  

The baseline "No Resampling" method achieved moderate performance but struggled with low recall 

(0.651), indicating difficulty in identifying minority class instances. SMOTE improved all metrics, 

particularly boosting recall to 0.752 while maintaining precision. Undersampling showed a slight 

decrease in accuracy but improved recall, demonstrating the typical trade-off associated with this 

technique. 

The hybrid approach consistently outperformed all other methods across all metrics, achieving the 

highest scores. This superior performance can be attributed to its balanced approach, effectively 

addressing the limitations of both oversampling and undersampling without significant information loss 

or overfitting. 

4.2.2.  Convergence and Communication Efficiency Table 2 shows the FLCR and CEI for each 

resampling method: 

Table 2. Federated Learning Convergence and Efficiency Metrics 

Method FLCR (rounds) CEI 

No Resampling 87 0.0082 

SMOTE 72 0.0104 

Undersampling 81 0.0093 

Hybrid 65 0.0128 

 

The baseline required 87 rounds with a low CEI of 0.0082, indicating slow convergence. SMOTE 

and undersampling both showed improvements, reducing rounds to 72 and 81 respectively, with 

increased CEIs. 

The hybrid method again excelled, needing only 65 rounds to converge (a 25.3% reduction from 

baseline) and achieving the highest CEI of 0.0128. This superior efficiency can be attributed to the 

method's ability to create a well-balanced dataset, enabling more effective learning and meaningful 

updates in each round. 

These results underscore the importance of addressing data imbalance in federated learning, not only 

for improving model performance but also for enhancing the efficiency of the learning process. The 

hybrid method's success in both areas makes it a promising approach for handling imbalanced data in 

federated learning scenarios.. 
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4.2.3.  Statistical Analysis To validate the observed differences in performance, a repeated measures 

ANOVA was conducted, treating resampling methods as the within-subject factor and performance 

metrics as dependent variables (Table 3). 

Normality and sphericity assumptions were checked utilizing Shapiro-Wilk and Mauchly's tests, 

respectively, to verify these conditions. When sphericity violations were detected, adjustments were 

made using the Greenhouse-Geisser correction. 

Table 3. Repeated Measures ANOVA Results 

Metric F-statistic p-value Effect Size (η²) 

Accuracy F(2.34, 21.06) = 18.73 < 0.001 0.675 

Precision F(2.51, 22.59) = 15.42 < 0.001 0.631 

Recall F(2.87, 25.83) = 22.61 < 0.001 0.715 

F1-Score F(2.62, 23.58) = 25.84 < 0.001 0.742 

AUC-ROC F(2.73, 24.57) = 19.95 < 0.001 0.689 

 

Post-hoc analyses using pairwise comparisons with Bonferroni correction revealed that the hybrid 

method significantly outperformed all other methods (p < 0.01 for all comparisons), while SMOTE 

showed significant improvements over no resampling and undersampling (p < 0.05). 

4.2.4.  Client-Specific Analysis To account for the non-IID nature of the data across clients, a 

hierarchical linear model (HLM) analysis was conducted, treating clients as random effects and 

resampling methods as fixed effects (Table 4). 

Table 4. HLM Results for F1-Score 

Effect Estimate Std. Error t-value p-value 

Intercept 0.711 0.015 47.40 < 0.001 

SMOTE 0.074 0.009 8.22 < 0.001 

Undersampling 0.020 0.009 2.22 0.026 

Hybrid 0.093 0.009 10.33 < 0.001 

 

The HLM analysis confirmed the superiority of the hybrid method across different client 

environments, accounting for the variability in data distributions. 

5.  Conclusion 

The study deeply examined the utilization and evaluation of resampling methods to handle data 

imbalance within the FL framework. It simulated a realistic scenario for federated learning by using the 

MIMIC-III healthcare dataset. The experiment comprised applying three distinct resampling techniques: 

SMOTE, random undersampling and a combination of both on multiple clients that were having non-

IID data distributions. 

The main findings show that resampling methods work well in enhancing model performance and 

effectiveness. SMOTE greatly improved recall and F1-score, raising the latter by 10.4% compared to 

baseline. Random undersampling demonstrated a balancing act between losing information and class 

equilibrium. The method that was a mix of SMOTE and random undersampling consistently performed 

better than other methods in all measurements. It increased the F1-score by 13.1% on average and cut 
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down communication rounds by 25.3%. This approach also had the topmost CEI value at 0.0128, 

showing it balances well between enhancing performance while keeping data transfer overheads low. 

Repeated measures ANOVA and hierarchical linear model analysis give statistical validation, 

showing the hybrid method's superiority (p < 0.001 in all comparisons). Large effect sizes (η² between 

0.631 and 0.742) highlight practical importance of these improvements. By using a detailed 

experimental design, this study offers a framework that can be replicated for future research in FL with 

imbalanced datasets. This highlights the need to deal with data imbalance so as to improve model 

fairness and strength in privacy-sensitive applications of FL. 

While this research offers valuable insights, future work should be improved by exploring at how 

widely these results can be applied in different areas and types of data. Also, it would help to see what 

happens when there are different levels of data imbalance and non-IID distributions. Additionally, more 

study were needed on adaptive resampling methods that change according to local data features. These 

will improve FL performance and make the proposed methods more applicable in real-life situations. 
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