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Abstract. Under market completeness assumptions, hedging a portfolio of derivatives is 

straightforward. In view of friction, transaction costs, liquidity and other factors, a framework is 

presented to extend the pricing and hedging with the hedging strategy treated as a neural network. 

We study the deep hedging model under incomplete market constraints such as frictions, traction 

cost, permanent impacts on the market and illiquidity. We discuss the limitations of certain mod-

els concerning the applications in deep hedging with constraints. After which, we analyse the 

advantages of different models and their joint models and find that the hedging strategy is close 

to the Black-Scholes delta hedging strategy. An example is also given when training after de-

signing two hedging models. The Black-Scholes delta hedging is indeed approximated by unsu-

pervised learning. 
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1.  Introduction 

Markets are suffered from imperfections especially when restrictions are observed during transactions 

or research is conducted based on its properties. In quantitative finance, pricing and hedging are funda-

mental topics in risk management and financial mathematics. Risk-neutral gives us an idea and a trac-

table solution under idealized markets where few factors are considered. When factors such as friction, 

liquidity and transaction costs are added to the model or the leading order needs to be explicitly decided, 

a model is needed which is precise and complex to emulate real-life trading situations with empirical 

data. However, even with recent models such as robust-hedging[1] and super-hedging[2], few solutions 

can be scaled independently and survive with a large portfolio. Combining the properties of deep learn-

ing and the techniques of mathematical models, the respective algorithms are model-free which is more 

suitable as a model when studying the markets. 

On one hand, we can see from the evaluation by Shi et al.[3] of the FBSDE solver developed by Han 

et al.[4], the solution is able to be found with a supervised learning framework. They found that the 

FBSDE solver performed well under short time horizons whereas the deep hedging algorithm yielded a 

stable while reliable for both short and fairly long-time horizons. On the other hand, the deep hedging 

model pioneered by H. Buehler et al.[5] addresses the problem of the lack of efficient alternatives in 

complete market models. As mentioned by Shi et al.[3], the FBSDE solver’s algorithm has a problem 

with the time horizon and discrete-time when scaling. Their approach is targeting the utility function, 

training and learning the optimal trading strategy directly with reinforcement learning algorithms[6]. 
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As part of the examination of the deep hedging algorithm, a model is constructed which approximates 

the Black-Scholes model under continuous-time to approximate the deep hedging method under contin-

uous time. Under this assumption, it indeed tends to the continuous-time Black-Scholes under rescaling 

of time and interpolation. Combined with Brownian motion [7], our model can be trained to see if it is 

suitable for hedging the call option. After modelling the profit and loss function as a function of the 

trading strategy and the change in price under a time sequence, we are able to match the trading strategy 

as a neural network in deep hedging. Considering that the deep hedging model works in discrete time, 

the model is capable of approximating the result with other models under certain constraints. At the end 

of this work, we have derived the Black-Scholes delta hedge by unsupervised learning. Compared with 

the delta hedge, we have shown that it is a good approximation which the model is approximate time 

normalization. By taking a smaller time interval, the hedging strategy tends to be a replication with a 

trained model. 

This paper also discusses the data pre-processing procedures of a deep hedging model and examines 

the pricing and hedging with friction markets in discrete time under certain measures. Additionally, in 

order to better compare the result of the Black-Scholes delta hedge strategy with the deep hedging model, 

graphs are generated to visualize under various parameters. 

2.  Related works 

Deep Hedging is a relevantly new topic emerging in recent years, it is an application of neural network 

algorithms in quantitative finance. There are many works [3, 5, 8] concerning applications of neural 

network algorithms in deep hedging. For example, deep generative methods such as Time Series Gen-

erative Adversarial Network which preserves the temporal dynamics property for time-series data, are 

used in commodity markets in which a Feedforward Neural Network named “deep hedger” is used to 

approximate an optimal policy [8]. Hence, the application of neural network algorithms in deep hedging 

is a fundamental element to be considered.  

In light of the hedging strategy that experts are looking for, researchers Buehler et al. [5] submitted 

the idea that the hedging strategy can be represented by a neural network [5]. In this model, the inputs 

are current and past market data, and the optimal Profit and Loss of a hedger can be gained after training 

the network under certain measures. Although the approach is in principle model-free due to the prop-

erties of neural networks, the available historical price paths for training may not be enough to feed the 

general model and thus, a model used to generate the training data could be an effective way to provide 

sufficiently many data. Another problem under this assumption could be the impact on the result given 

different calibrated data. The result shows that when synthetic time series is used in pricing derivatives 

and derivation of corresponding hedging strategies, two different hedging strategies and policies could 

be derived from two different calibrated samples[9]. As a result, the model that produces the training 

data should be calibrated to market data or data can be otherwise generated from another market simu-

lator.  

As a remark of a concept in deep hedging, continuing from the proposition that the approach is 

model-free, we can include market frictions [3]. Considering the applications of deep reinforcement 

machine learning methods [6] as typical example models with the presence of market frictions, only 

generator, loss function and trading instruments are additionally needed [9] that depend on no market 

dynamics. And Shi et al. [3] have developed an algorithm that yields optimum even in high dimensions 

which primarily depends on the number of hedge instruments [5]. In the neural network, optimization 

is performed under some performance measures such as hedging error, risk measure or utility function 

with a set price path. This paper also examines the framework of pricing and hedging using convex risk 

measures with market frictions in discrete time.  

Specific examples with certain conditions are examined in order to acquire a better understanding of 

some of the applications in deep hedging which is useful when generalizing to more general cases as 

well as used to improve and optimize models. This paper compares the deep hedging strategy with the 

corresponding Black-Scholes delta hedging strategy. Since deep hedging works in discrete time, a model 

can be constructed to approximate the continuous-time Black-Scholes model. This paper also compares 
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the deep hedging model created by Buehler et al. [5] with other models and analyses the advantages of 

combined models. 

3.  Methods 

The approach of deep hedging is a realization of the idea of treating hedging strategy as a neural network. 

As mentioned above, we input historical data or data from other market simulator and manage to opti-

mise the Profit and Loss of the hedger under some performance measure with price paths which is shown 

below. 

3.2.  Model establishment 

Here, we go through the classical Black-Scholes delta hedging strategy with the deep hedging approach. 

One advantage of using deep hedging is that, in terms of the imperfection of markets such as the friction 

of markets, illiquidity, permanent impact on the market and transaction cost, it is relatively convenient 

to include more information or calibrated data. 

Since the deep hedging strategy is effective in discrete time, we set up the price process in a way that 

enables our corresponding model approximates to the Black-Scholes delta hedging model [10]. The 

price process is shown in Equation (1), where we have positive constants


> 0,  > 0 and 0S
> 0, 1 ,…,

T  are mutually independent random variables which is

1
(0, )N

T distributed. 

1

( )

0·

t

i

i

t

T

tS S e
  

=

+ 
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As T tends to infinity, under rescaling and interpolation, the process S tends to continuous-time Black-

Scholes price process as expected which is given below: 

*

0·
tt W

tS S e
 +

= (2) 

 In this formula, [0,1]( )t tW W =
 is the standard Brownian motion. We set the values of the parameters 


=0.1,  =0.5, T =100, 0S

 =1. 

Since the deep learning method is applied in this model, we set N = 100000 the number of independ-

ent samples of price path S for training purposes. 

Our aim here is to hedge the call option which is expressed as: 

( )TS K +− (3) 

We are in search of an adapted and self-financing trading strategy for the underlying asset whose termi-

nal value at time T is as close as possible to the payoff of the option. Denote every trading strategy that 

is found by its initial value xR and its position tp
 for the intended asset. Because it is an adapted 

process, tp
has to be a function of the past prices 1 0, ...t tS S S− only. Assuming zero interest rate applies 

here, we can write out the final value of the strategy as 

1 1

1

( )
T

T t t t

t

V x p S S− −

=

= + − (4) 

Hence, the Profit and Loss of the option hedger would therefore be: 

𝑃𝑟𝑜𝑓𝑖𝑡 𝑎𝑛𝑑 𝐿𝑜𝑠𝑠 ( )T TV S K += − − (5) 
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Since x and 0S
are fixed, we can treat Profit and Loss as a function of 0 1 1, ,..., Tp p p − , also we define 

the difference in prices as 1, 1t tS S S t− = −  Z
, then we can express the Profit and Loss as a func-

tion shown below, 

Profit and Loss 

0 1 1 1 2 1 0

1 1

( , ,... ; , ,..., ) ( )
T T

T T t t t

t t

p p p S S S x p S S S K +

− −

= =

   = +  − +  −  (6) 

Now, we represent the trading strategy
p

or t  as a neural network with inputs available historical and 

current market data and outputs the corresponding hedge as below, 

1 0( , ,..., )t t t tp f S S S−= (7) 

Here we can simplify our problem without a loss of generality, we search for a single network 

:[0,1]f  →R R such that t =
( , )t t

t
p f S

T
=

with 0,1,..., 1t T= − , where tf  is a neural network f  

for the time sequence t from 0 to 1T −  and the price process tS
is a Markov process.  

After reviewing the property of the given and output data, we can specify our function f  as below: 

rf N  (2, 100, 100, 100, 1;  𝑅𝑒𝐿𝑈, 𝑅𝑒𝐿𝑈, 𝑅𝑒𝐿𝑈, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑) (8) 

where r = 4 gives a four activation functions neural network. Here we use the Sigmoid simply because 

the hedging position is 0 or 1 intuitively. This choice is not necessary, but it helps optimize the result. 

3.2.  Model optimization 

We train our f  with independently chosen samples 0( ) , 0,..., 1i i T

t tS S i N== = −
. 

Our objective here is to find the quadratic hedging error, namely when the square of the Profit and Loss 

is empirically minimized. So, we define a loss function,  

0 1 1 0 1 1(( , ,..., ), ( , ,..., )) :T Tl y y y y y y− − =  Profit and Loss
2

0 1 1 0 1 1( , ,..., ; , ,..., )T Ty y y y y y− − (9) 

We fix x  as the respective Black-Scholes call price BS 0( , ,1)S K
. Since the loss function l  is custom-

ized, it needs to be implemented separately in Keras. Then, we train the network using Adam with 

minibatch of size 100 over 4 epochs.  

In training, the i -th sample is  

( , )i

t t

t
y f S

T
= , 1

i

t ty S +=   (10) 

Therefore, we need to evaluate the outputs 
( , ), 0,1,..., 1i

t

t
f S t T

T
= −

 for samples 0,1,..., 1i N= −  at 

the same time. By supplying the features
( , )i

t

t
S

T as a higher-dimensional array in Keras, we can get the 

result. 
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Figure 1. The Deep Hedging strategy and The Black Scholes hedging strategy. 

Figure 1 shows a good approximation for enough data. We can see that for large T , the price process 

S approximates the Black-Scholes price process 
*S , the hedging strategy 

( , )t t

t
p f S

T
=

 should be 

close to the Black-Scholes’ delta hedging strategy. 

* ( , ,1 )t t

t
p BS S K

S T




= − (11) 

This shows a perfect replication which yields zero Profit and Loss. It can also be seen from the graph 

for the trained network f . 

4.  Discussions 

Having considered the approach of treating trading strategy as a neural network, we built a model around 

this concept which showed the application of deep learning in deep hedging. Unlike robust-hedging or 

super-hedging where few solutions can be independently scaled and considered with large portfolio, this 

model approximates from discrete-time to continuous-time with rescaling of time and interpolation as 

T tends to infinity. Since neural network algorithm is implemented in deep hedging, we can take ad-

vantage of the property of it which is that imperfections mentioned can be incorporated directly into the 

framework and that is hard to work with from the analytical point of view. 
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As mentioned previously, with the help of neural network algorithm, we are able to cope with the 

imperfection of the market, the model works well even with the emergence of friction, transaction cost, 

illiquidity or permanent impact on the market. The model showed a good approximation to the Black-

Scholes delta hedge by deep learning which is learnt by the network itself through Profit and Loss opti-

misation. The model yields a trading strategy which considered imperfections of markets, the modifica-

tion of the model would depend on the purposes of the model, thus different generators can be used, or 

the model can be set under convex transaction costs on trading rates. The approach is the same since the 

optimum solution is calculated with a trained learning-based algorithm. Then the outcome is compared 

with a benchmark, for example, the Black-Scholes hedge strategy, for further conclusions. 

As for the pre-processing procedure of data used for a deep hedging model, we can perform a cali-

bration to market data on a model which generates training data or use some other market simulator.  

When considering the potential problem of overfitting, it can be treated with a regularisation method 

by introducing dropout. A dropout layer is added after each hidden layer with a rate [0,1]p creating 

a new network. Although the training loss remains bigger than the model error variance of 0.1, the 

validation loss is close to the training loss. 

Since we are considering the call option here, we assume the pricing hedging duality gap is preserved, 

otherwise, we may link it with strict local martingales which are related to trading restrictions and cur-

rent market prices. This content would be beyond the scope of the paper. 

5.  Conclusions 

We have discussed the application of neural network algorithm in deep hedging which is shown by a 

model that approximates the classic Black Scholes hedge strategy in the incomplete market. The neural 

network algorithm has such a wide application in deep hedging and potential in other fields. Optimised 

approaches of solutions would have varied impacts on the program running time which is also the case 

from the aspect of the numerical method or operational research.  Deep learning will have more appli-

cations in the financial industry not limited to finding the optimal trading strategy in deep hedging. 

Multi-factors analysis and backpropagation with other classic neural network algorithms can also be 

implemented in the stock price forecast and so on. Deep hedging is a relatively new topic in the deep 

learning community, more correlations and applications would be found for joint subjects. 
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