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Abstract. Object detection of aerial images collected by UAVs is significant in UAV missions, 

such as agriculture, urban planning, and traffic monitoring. Aerial images also referred to as 

remote sensing images (RSI), and they normally have problems like low resolution, variation of 
object sizes, and blurred backgrounds. The commonly seen detectors lack feature fusion and 

refinement module to integrate and refine semantic information and shallow features. In Addition, 

the detector head module that is not customized and well-designed is not adaptable to feature 

maps with different distributions. The problems associated with these detectors will lead to 

insufficient feature representation and deteriorate the detector's performance. To overcome this 

challenge, we propose an innovative oriented object detection framework SkyNet, including our 

novel efficient atrous attention module (EAAM) and a mixture of expert heads module 

(MOEHM). The EAAM is integrated with PAFPN to refine multi-scale semantic and contextual 

features. The MOEHM is for adaptively aggregation decisions from different head structures. 

Compared to the baseline model, SkyNet demonstrates a 0.87% increase of mAP on the DOTA 

dataset and a 1.2% increase of mAP12 on the HRSC2016 datasets. These results demonstrate the 

remarkable performance of SkyNet in oriented object detection of RSI. 
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1.  Introduction 

Unmanned aerial vehicle (UAV) demonstrates extensive application and research in tasks such as urban 

planning, traffic monitoring, and video capturing. Oriented object detection (OOB) in RSI collected by 
UAVs’ optical sensors includes several challenges. RSI normally includes objects with arbitrary 

orientations and shapes, and they might be captured in severe weather conditions. General Detectors, 

such as the YOLO series [1-3] utilize a horizontal bounding box (HBB) for object localization. However, 

because RSI includes objects with various scales and orientations, HBB usually covers regions not parts 
of the object. To solve this issue, OOB applies the oriented bounding box that includes angles for 

regression. Therefore, utilizing convolutional neural networks for OOB will significantly enhance the 

detection accuracy. 
Two distinct modules are introduced: The efficient atrous attention module EAAM and the decision 

aggregation module MOEHM. Multi-scale feature fusion, assessment and decision aggregation 

efficiently enhance a detector's performance. Multi-scale feature enhancement generally includes fusing 
deeper-level semantic information with shallower-level contextual information and placing a feature 

enhancement module within the feature fusion module. RSI often includes small objects with various 
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shapes and orientations, posing significant challenges for detectors. The detectors commonly utilize 

FPN [4] after a feature extraction module for multi-scale feature enrichment and fusion. Decision 

aggregation means aggregating the decision from the detector's head, which predicts the classification 
and localization result. We used the mixture of experts training techniques for large language models to 

enhance feature representation while introducing minimal computational cost to aggregate the decision 

from different head structure structures adaptively. 

2.  Oriented Object Detection of Remote Sensing Images with Deep Learning 

2.1.  Oriented Object Detection of Remote Sensing Images 

Oriented Object Detection (OOD) provides significant insight into RSI because it can detect objects 

with various orientations and shapes. RRPN [5] utilizes angled anchors to produce rotated proposals that 
align with the object's orientations. The ROI Transformer [6] convert the horizontal bounding boxes into 

rotated ones. However, the conventional approaches always introduce extra computational costs. 

Improvements such as the Gliding Vertex [7] adjust the vertex's position to enhance oriented object 
detection, introducing less computational cost. However, although these detectors introduce angled 

predictions for RSI, more robust OOD frameworks are still needed to boost detection performance. 

2.2.  Attention Mechanism 
The Attention Mechanism typically highlights the crucial aspects of feature maps, spatial-wise or 

channel-wise. The Squeeze-and-Excitation (SENet) [8] is a form of channel attention that emphasizes 

the significant channel of feature maps. The convolutional block attention module (CBAM) [9] has 

channel-wise attention followed by spatial-wise attention, enhancing the features by sequentially 
focusing on essential channels and regions. Many two-stage detectors use the CBAM to perform feature 

refinement during the feature extraction stage. In order to highlight the crucial channels, the ECANet 

[10] utilizes the one-dimensional convolutional kernel to learn local cross-channel interaction. The 
SENet, CBAM, and ECANet are generally used as feature selection and enhancement techniques within 

the feature extraction stage. 

2.3.  Multi-scale Feature Enhancement and Fusion 

The convolutional neural networks comprise several layers; the deeper layers generally have more 
semantic information, and the shallower layers have more contextual information than the deeper layers. 

Feature enhancement and fusion means having a feature selection or enhancement module used to refine 

multi-scale feature representations and fusing deeper-level features with shallower-level features. The 
FPN introduces a top-down pathway to aggregate semantic information to contextual information, 

enriching the feature representations from the CNN backbone. PANet [11] introduces a bottom-up and 

top-down path to further aggregate features from the CNN backbone. NAS-FPN [12] uses architectural 
search to configure the multi-scale feature fusion. Nonetheless, these feature fusion schemes are 

effective for natural images, but they lack customization for RSI due to the inherent challenging nature 

of RSI. 

2.4.  Mixture of Experts 
The Mixture of Experts (MoE) is an adaptive ensemble technique, and it is widely used in natural 

language processing, particularly for the training of large-language models. The approaches divide the 

networks into submodules, each called “expert”. A gating mechanism will decide which experts will be 
used in learning and aggregate the results from each expert. For each input feature representation, only 

a few experts will be selected, and the selected experts are chosen according to the top-k selection 

algorithm, which will return the indices of experts with the highest gating scores. The selected experts 
will aggregate their weighted predictions and generate the final prediction result. The Switch 

Transformer [13] introduces more parameters to enrich feature representations with negligible 

computational cost. 
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3.  Methodology 

3.1.  Overall Pipeline 

Figure 1 demonstrates the overall architecture of the SkyNet. SkyNet comprises the feature extraction 
module ResNet, a multi-scale feature fusion module PAFPN, our proposed feature selection and 

enhancement module EAAM, the proposal network Oriented RPN, and our proposed decision 

aggregation module MOEHM. Our proposed EAAM are integrated with PAFPN for multi-scale feature 
fusion and enhancement, and our proposed MOEHM module incorporates a mixture of experts to 

aggregate the predictions from different expert structures adaptively. 

 

Figure 1. The overall architecture of SkyNet 

We propose the EAAM for feature enhancement and refinement, which is utilized after the feature 

extraction stage of Resnet. The EAAM focus on essential channels and help to reduce noise and 

irrelevant information from each stage of Resnet. The baseline module utilizes FPN for feature fusion, 
but we decided to use PAFPN for enhanced feature fusion since PAFPN introduces another bottom-up 

path. For the MOEHM, the input feature maps from PAFPN will be fed into the gate unit, and the gate 

will generate scores for each expert structure we proposed. A top-k selection mechanism will select the 
expert for prediction based on the generated scores.   

3.2.  Efficient Atrous Attention Mechanism 

 

Figure 2. The structure our proposed feature refinement module EAAM 

Figure 2 shows the overall structure of the EAAM. The input will be average pooled and generate the 

feature descriptor p, and the p will go through one-dimensional atrous convolution with different atrous 
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rates. The atrous convolution will enhance the receptive field, so they will learn different local cross-

channel interactions and generate p1, p2, and p3, which will be fused and become the enriched feature 

representation A’. The entire workflow of the EAAM can be expressed in Equation 1, where p = 

GAP(Input) and 𝜎 denotes the sigmoid function. 

R𝑒𝑠𝑢𝑙𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 = σ(AtrousConv1(p) + AtrousConv2(p) + AtrousConv3(p)) ⋅ Input (1) 

We use the atrous convolution to generate multi-scale feature descriptors to enhance the receptive 

field for the input sequence. The atrous convolution can increase the receptive field of the convolutional 

kernels without introducing extra parameters, which is achieved by inserting zeros between the filter 
weights. Figure 3 visualizes the one-dimensional and atrous convolution kernels with an atrous rate 

equal to 2. The red boxes in Figure 3 denote the regions of the standard convolution kernel and the 

regions of the atrous convolutional kernel. We utilize standard convolution and atrous convolution with 
atrous rates equal to 2 and 3 in our attention mechanism, and this setting generates optimal results. 

 

Figure 3. The visualization of one-dimensional standard convolution and atrous convolution 

3.3.  Mixture of Experts Head Module 

Our proposed mixture of detector head modules aggregates the classification and localization results 

from different detector head “expert”. These experts have different structures; two are single-branched, 
and one is double-branched. A double-branch head structure uses a convolutional head for regression 

and linear layers for classification. The logic of a mixture of experts starts from input to experts, which 

can be formulated as Equation 2, where yi denotes the output of the ith expert.  

 𝑦𝑖 = 𝑓𝑖(𝑥)  (2) 

Equation 3 illustrates the gating network computes the gating values gi for each expert based on the 

input x, and Wg and bg denote the weights and biases. In our experiment, we set the bias to zero. After 

the gating scores are generated, the Softmax function ensures the gating values sum to one. 

𝑔𝑖 =
exp{(𝑊𝑔 ⋅ 𝑥 +  𝑏𝑔)}

∑ exp{(𝑊𝑔 ⋅ 𝑥 +  𝑏𝑔)}
{𝑁}
{𝑗=1}

(3) 

Equation 4 means that each expert’s prediction yi is aggregated by its gating value gi, generating the 
weighted output zi. 

𝑧𝑖 = 𝑔𝑖 ⋅ 𝑦𝑖 (4) 

The final output y is the weighted sum of each expert’s prediction yi, and the final aggregated result 
is formulated in Equation 5: 

𝑦 = ∑ 𝑧𝑖

𝑁

𝑖=1

= ∑ 𝑔𝑖

𝑁

𝑖=1

⋅ 𝑦𝑖 (5) 

In our experiment, we utilize two single-branch experts and one double-branch expert. A Single 
branch means only one branch of fully connected or convolution layers for the head module. Double-

branch means we have one branch full of convolutions for regression and fully connected layers for 

classification. Because the input feature maps learned by previous stages are of various distributions, as 

remote sensing images often contain diverse and complex patterns, applying a mixture of experts allows 
for more customization and specialization. In our design, the model will learn from the distribution of 
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input feature maps and adaptively adjust weights for selected experts to focus on the most relevant 

features, enhancing overall performance and accuracy. 

 

Figure 4. The structure our proposed decision aggregation module MOEHM 

Figure 4 visualizes the overall design of MOEHM. The input will be fed into the gate unit, generating 

scores and indices for each expert. The top-k selection algorithm will select experts with the highest 

scores, and only the selected experts will be used to generate results, and each result will be aggregated 
by weights learned from the gate unit. The aggregated results will be the detector's eventual classification 

and regression results. Because of the memory restrictions of our GPU, we have 3 experts in our final 

design, and the active experts for each input feature map are 2. These experimental settings generate the 

best detection performance. 

4.  Experimental Results 

4.1.  Datasets 

DOTA-v1.0 [14] datasets are a large-scale remote sensing benchmark comprising 2806 remote sensing 
images. The abbreviations of categories are shown as follows: Ground track field (GTF), Soccer-ball 

field (SBF), Plane (PL), Tennis court (TC), Harbor (HA), Small vehicle (SV), Baseball diamond (BD), 

Swimming pool (SP), Helicopter (HC), Ship (SH), Basketball court (BC), Roundabout (RA), Large 
vehicle (LV), Bridge (BR), and Storage tank (ST). HRSC2016 [15] is a dataset that includes only one 

category: ship. This dataset features six harbors worldwide and is commonly used for object detection 

for remote sensing imagery. 

4.2.  Evaluation Metrics 
This research uses the mean average precision (mAP) to demonstrate the model performance. The mAP 

measures the accuracy of detection results, and it is the mean of the average precision (AP) score. 

𝑚𝐴𝑃 =
1

𝐶
∑ 𝐴𝑃𝑐

𝐶

𝑐=1

(6) 
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In Equation 6, C denotes the total number of categories, and APc denotes the average precision for 

each category. The AP measures the precision-recall tradeoff across different threshold values and is a 

critical metric for detection tasks. 

4.3.  Comparison with State-of-the-Art Detectors 

In this Section, we will demonstrate the result of our proposed framework by comparing our detectors 

with the previous State-of-the-Art Detectors. All models were trained and tested under uniform 
conditions, applying the same parameter settings to ensure fairness. The complete comparison result for 

the DOTA dataset is shown in Table 1. Almost for each category of DOTA, our detector shows 

improvements compared to the baseline model ORCNN. Our model achieves a 0.87% increment for 

mAP. We compared our result with ROI-Transformer, DRN, SRCDet,  

Table 1. Comparison of our proposed method with other state-of-the-art detectors on DOTA. 
Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP 

ROITrans [6] 

DRN [16] 

SCRDeT [17] 

R4Det [18] 

ORCNN  

Ours  

R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56 

H-104 

R-101 

88.91 

89.98 

80.22 

80.65 

43.52 

52.09 

63.35 

68.36 

73.48 

68.36 

70.69 

60.32 

84.94 

72.41 

90.14 

90.85 

83.85 

87.94 

84.11 

86.86 

50.12 

65.02 

58.41 

66.68 

67.62 

66.25 

68.60 

68.24 

52.50 

65.21 

70.70 

72.61 

R-152 

R-50 

R-50 

88.96 

89.55 

89.62 

85.42 

82.56 

83.74 

52.91 

54.65 

54.39 

73.84 

73.32 

74.20 

74.86 

78.88 

78.97 

81.52 

83.53 

83.07 

80.29 

88.06 

88.23 

90.79 

90.89 

90.90 

86.95 

86.28 

86.67 

85.25 

83.60 

85.75 

64.05 

59.41 

62.16 

60.93 

66.12 

68.47 

69.00 

74.67 

74.68 

70.55 

69.44 

69.38 

67.76 

55.69 

60.10 

75.84 

75.82 

76.69 

For the HRSC2016 dataset, Table 2 shows the result of each SOTA detector, and we used mAP07 

and mAP12 as the evaluation metrics. Based on the mAP07 and mAP12 results, we can see that our 

proposed detectors demonstrate better detection performance. For both tables, the backbone column 
denotes the feature extraction network for each detector, and we only used Resnet, which contains 50 

layers. Our proposed detectors significantly enhance the detection accuracy and use fewer layers and 

parameters, indicating our overall framework's effectiveness and our proposed EAAM and MOHEM 
modules.  

Table 2. Comparison of our proposed method with other state-of-the-art detectors on HRSC2016. 

Method Backbone mAP07 mAP12 

ROI Trans 

Rotated RPN [19] 
R3Det [20] 

ORCNN 

Ours 

R-101 

R-101 
R-101 

R-50 

R-50 

86.20 

79.08 
89.26 

90.36 

90.60 

- 

85.64 
96.01 

96.40 

97.60 

In this Section, we will demonstrate the result of our proposed framework by comparing our detectors 
with the previous State-of-the-Art Detectors. All models were trained and tested under uniform 

conditions, applying the same parameter settings to ensure fairness. The complete comparison result for 

the DOTA dataset is shown in Table 1. For most categories of DOTA, our detector shows improvements 
compared to the baseline model ORCNN.  

5.  Conclusion 

In this study, We propose our novel framework, Sky-Net, for oriented object detection of aerial and 
remote sensing images collected by the optical sensors of UAVs. Compared to the baseline ORCNN 

model and other state-of-the-art models, our model framework improves the model performance and 

maintain the computational speed. Sky-Net utilizes EAAM with PAFPN for feature selection 

enhancement and refinement, and it also utilizes the adaptive and sparsely gated MOEHM for adaptive 
decision aggregation based on the input data distribution. We validate our framework on two popular 

public benchmark datasets and demonstrate that our model achieved enhanced performance. This 

conclusion affirms that integrating feature enhancement and decision aggregation modules will be 
highly effective for oriented object detection of remote sensing images. 
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