

 Asynchronous FIFO module design and implementation

Hengrui Wu

School of Electronic Information and Engineering, Shenzhen University, Shenzhen,

518060, China

2020301006 @email.szu.edu.cn

Abstract. In the modern development of communications engineering as well as circuit design,

engineering often involves the production of individual chips in the field. Among these, the code

required for the operation of the chip is of vital importance. In the situation of dealing with the

transfer of data from different clocks in the chip, the design of a cross-clock program module

with high efficiency is the best means to solve the problem. In this regard, the asynchronous

FIFO program is able to complete the transfer of data between clocks more perfectly, reaching

the basis of multi-clocked chip operation. In this paper, written in Verilog language, an

asynchronous FIFO program is designed to transfer data in the read-write clock domain, and at

the same time, the conversion of Gray code and the storage of second-level registers are added

to the program to achieve effective mitigation of the metastable state problem that may arise in

the process of data transfer and to analyze whether the bit error rate of data transfer meets the

requirements by combining with the simulation results.

Keywords: Cross-clock, asynchronous FIFO, metastable state, Verilog.

1. Introduction

In modern integrated circuit design, there are often multiple clocks in the chip to control data transfer.

The transfer of data under the control of different clocks requires the modules to be interconnected and

requires a high degree of precision as well as transfer efficiency. For this reason, it is important to design

a means of storing and transmitting data between different clocks. Under the multi-clock domain,

asynchronous FIFO can realize the control of the asynchronous interface between two clocks for data

transmission between different clocks. Tan in order to design a fiber grating sensor with a data

acquisition function [1], the use of asynchronous FIFO system as the grassroots means of transmission,

and successfully achieved low-power high-speed acquisition at the same time to achieve the function of

high sampling rate. Asynchronous FIFO not only effectively alleviates the timing requirements, but also

solves the problems of clock difference between reference clocks, between local and remote, as well as

the problem of metastable state [2].

Designing an efficient asynchronous FIFO program is the key to achieving data transfer across

different clocks. To address the phenomenon of data transfer generating sub-stability across different

clock regions and the way to address the read-empty and write-full representations, the program

optimization process is written, and relevant experimental data is obtained.

Comparing the counter method and the expand-high-pointer method in synchronous FIFO design,

since it is more difficult to distinguish the counting increment and decrement between different clocks

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241025

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

164

in asynchronous FIFO, choosing the counter method is a difficult and low-value choice. For this reason,

the expansion of the high-bit pointer method is used for the design, the address pointer is expanded by

one bit as an indication bit, while comparing the value of the read and write pointers to determine the

read empty and write full. In this paper, the expanded high-bit pointer method is used as the basis to

write in Verilog language on a notepad, and the result of the writing is run on models for simulation to

get the data.

This research is based on the writing of an asynchronous FIFO program to achieve low BER,

optimizing the program and reducing the delay in data transmission if the program is implemented and

the simulation results are error-free, obtaining the improved program and further checking the BER.

2. Theoretical foundations

2.1. FIFO module

FIFO is a first-in-first-out dual-port data buffer that enables sequential writing of data and sequential

reading of data with reduced input signal control lines. The framework of this asynchronous FIFO

program is shown in Fig 1.

Figure 1. Basic framework diagram of asynchronous FIFO [3].

The above is the basic FIFO program implementation diagram. The depth of this FIFO is 4 and the

bit width is 2^4.In order to implement the FIFO, a total of five aspects of the module need to be designed,

which are Dual Port Storage RAM, Read Controller, Write Controller, R2W Synchronizer, and W2R

Synchronizer [4].

The read/write controller determines and generates read/write pointer signals when read/write signals

and enable signals to occur, and inputs them into the memory RAM.

The storage RAM consists of groups of registers. Input data is written to the storage unit when the

write signal is valid and read from the storage signal when the read clock signal is valid. When data is

written or read, the read and write addresses are automatically totalized [4]. R2W and W2R synchronizer

roles are similar, R2W is the read counter synchronized to the write clock domain, after the

synchronization of the signal and write binary counter comparison, to determine whether it has been in

the write state, synchronized to the write state flag bit and data output. Similarly, W2R synchronizes the

write counter to the read clock domain and then compares it with the read binary counter to determine

whether it is in the read empty state, synchronizes it to the read state flag bit, and performs data

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241025

165

output.The read and write flag bits are used to generate read-empty and write-full signals and transfer

data to the module.

The pinout of this program is shown in Table 1.

Table 1. Asynchronous FIFO pins.

pinout I/O functionality

wr_full O Full flag bit, active high

rd_empty O Empty flag bit, active high

wr_en I Write enable signal, active high

rd_en I Read enable signal, active high

wrclk I Write Clock Signal

rdclk I Read Clock Signal

wr_rst_n I Write Reset Signal

rd_rst_n I Read reset signal

wr_data I Write Input Data

rd_data O Read Output Data

2.2. Procedural difficulties

As for the key part, it is to design the R2W module and W2R module, so that the read and write clock

domains are synchronized [5]. In this, it is inevitable to encounter data transmission, “the report of the

empty full but not reported”, this is the impact of the data transmission caused by the substable state. If

a data signal before the change does not meet the requirements of the flip-flop establishment and hold

time, the output of the flip-flop may enter the substable state [6]. The details are shown in Fig 2.

Figure 2. Generation of sub-stable states.

It can be seen that in order to achieve the read and write pointer values synchronized to the same

clock domain, the use of binary pointer conversion to Gray code this way, can effectively reduce the

generation of substability. Gray code is a non-weighted code, each time the value changes only one

digital change, compared to the binary code each time the change of 1 to 4 bits, Gray code in this way

to determine the read empty and write full of this way the error tolerance will become very high, there

will not be a “report empty and full and did not report” this situation. In this writing, Gray code operation

is shown in Fig 3.

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241025

166

Figure 3. Example of empty-full judgment diagram using Gray code [7].

After the selection of the Gray code conversion method, data transmission when the generation of

substability problem can be initially solved, can be seen in order to further reduce the impact of

substability, the use of two-level registers to store data, can reduce the probability of substability. The

two-level register is in the case of different clock domains input data, the data of each clock domain

latches two beats, when the first clk is the rising edge of the data collection, at this time if the second

clk is also in the rising edge, will be collected a change of data1, trigger 1 is in the suitable state. But

with the use of a secondary latch, the clock will be delayed by one beat, this time data1 will tend to

stabilize, and trigger 2 at this time on the stabilization of data1 collection, the output data2 will become

a certain value. This way can effectively reduce the impact of the substable state.

Next is the relationship between the read-empty and write-full states. Here is used to increase the

flag bit, when read empty and write full, read empty flag bit and write full flag bit will become high. At

this time, if the read and write the highest bit is the same and the rest of the bit is also the same, the

judgment is read empty. If the highest and second highest bits are different and the rest of the bits are

the same, it will be judged as written fully.

3. Program implementation

3.1. FIFO variable definition

Parameter WIDTH = 16, parameter PTR = 4 parameter PTR = 4 Defines a FIFO depth of 4, a

bit width of 2^4, and the amount of inputs and outputs required by each read and write controller.

3.2. Read empty judgment module

The inputs are synchronized write pointer, read enable signal, read clock, read reset signal, and the

outputs are read address and read null signal.

When the stored data rd_empty == 1’b0 is not empty and there is a read enable signal rd_en == 1’b1

input, the read pointer is added 1.

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241025

167

The read pointer signal is later converted to Gray code. The Gray code essence rd_gray <=

{ rd_bin[PTR], rd_bin[PTR:1] ^ rd_bin[PTR-1:0] } is a bitwise dissimilarity between the binary code

and the binary code of the right one bit, and the data obtained is the Gray code converted to. [7]

The resulting Gray code is placed in a secondary register to minimize the probability of metastable

state.

Figure 4. The nature of Gray’s code applied to the conversion in FIFO [7].

After getting the Gray code, judge whether wr_bin_rd == rd_bin, the read pointer signal is the same

as the synchronized write pointer signal, and if it is the same, the read empty signal rd_empty is set to

1.

3.3. Write full judgment module

It is basically the same as the Read Empty Judgment Module, which compares the write signal converted

to Gray code with the synchronized read pointer.

The point of difference is that the judgment condition is different, it is compare (wr_bin[PTR] ! =

rd_bin_wr[PTR]) && (wr_bin[PTR-1:0] == rd_bin_wr[PTR-1:0]), read and write pointers are the same

in the highest bit and the second highest bit and the rest of the bits are different, the write pointer overruns

the read pointer by one turn, and the write signal wr_full = 1’b1 is output.

3.4. R2W read pointer synchronized write clock domain module

Rd_bin_wr[PTR] = rd_gray_ff2[PTR], Synchronize the read pointer to the write clock domain, output

the write pointer signal, and the inputs are read clock, read pointer, and read reset signals.

The obtained Gray code rd_gray_ff1 <= rd_gray;rd_gray_ff2 <= rd_gray_ff1 is put into the second

level register to synchronize the read pointer with the write clock domain in a second level register. The

secondary register latches the input data for two beats, effectively reducing the probability of substability.

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241025

168

3.5. W2R write pointer synchronized read clock domain module

Consistent with the R2W Read Pointer Synchronization to Write Clock Domain module type, here the

write pointer is synchronized to the read clock domain through a secondary register for conversion, after

which the signal is fed into a RAM register.

4. Simulation test

After organizing the above code, make a simulation in the form of a tb file and test the results on the

ModelSim software. Initialize the signals and set all signals except the reset signal to 0. Define wr_data

<= $random, the input signal is a random variable. After that, write the program to save the 100 input

signals and compare them with the output signals. If there is no difference between the 100 input signals

and the output signals, the asynchronous FIFO program is considered to be running correctly and the

output is “simulation is ok”, otherwise, the output is “simulation is wrong, error point is”, pointing out

the place of error. If there is no difference between the 100 signal inputs and outputs, the asynchronous

FIFO program is considered to be running correctly, and “simulation is ok” is the output.

The data waveform for a run of 1000us is as follows.

Figure 5. The first half of the simulation results.

At the beginning of the write data and read data in the middle of the delay, because at this time just

write data running FIFO memory for the 2-level register beat and Gray code conversion and other

operations, because of the situation. With the back of the read and write pointer synchronization data

gradually flat.

Figure 6. The second half of the simulation results.

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241025

169

The clock change and reset signals have waveform outputs, and the inputs of the write-full and read-

null signals also have normal waveforms.

The data written and read are identical, and according to the results of running the code, it can be

seen that the data input and output do meet the requirements of asynchronous FIFO, and the

synchronization of data is achieved.

Looking at the read and write data inputs and outputs from Memory List, the 100 data for comparison

are as follows.

Figure 7. Comparison chart between input data and output data.

The results are consistent and it can be seen that with 100 data transfers in the test, there are almost

no BERs.

5. Results and discussion

This asynchronous FIFO is written to solve the read-empty and write-full problems, utilizing binary to

Gray code to binary to reduce the occurrence of suitable conditions, and also utilizing second-level

registers to implement beat caching, which improves the stability of the code operation and increases

the fault tolerance rate. The simulation results use the method of giving input data random variables and

comparing them with output data to see if the asynchronous FIFO program successfully realizes the

input and output of data across the clock domain. The asynchronous FIFO program accurately

implements the data transfer function as viewed from the simulation graph results as well as the data

memory area.

However, it is not difficult to see that the program has too long a lead time in transmitting the data

because using a second-level register decreases the rate of transmitting the data while decreasing the

incidence of substability. This is the classic sacrifice of validity for reliability within communication

engineering.

Further, in order to make the function more comprehensive, there are also many ways to improve the

program design, for example, the delay control module can be added to control the data transmission

[8], and the anti-seu module to achieve resistance to single-particle inversion [9], can optimize the

program design. For the results of this study, the design of the asynchronous FIFO program for the

overall development of the chip to improve the data transmission module, such as literature [10],

asynchronous FIFO used in the field of communication can be realized between the mailboxes to transfer

information, for the use of electronic science in the transmission of data to lay a good foundation.

6. Conclusion

This research has refined the solution to the problem of transmitting data across clock domains with an

asynchronous FIFO program. Starting from the study of the basic structure of asynchronous FIFO, we

gradually analyze the knowledge and understanding required to design an asynchronous FIFO program

and the difficulties that need to be overcome. After mastering the basic principles of Gray code and

secondary latch to solve the substable problem, we began to write the program several times and modify

the error reporting problem, and finally obtained the simulated experimental data and successfully

measured the error code of data transmission in the case of the program running, so as to verify the

solution of the substable problem.

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering

DOI: 10.54254/2755-2721/72/20241025

170

This study provides a more accurate data transmission method in terms of communication software

as well as data transmission code for chip fabrication, which can provide a certain basis and concept for

complex circuit design. However, in terms of depth, the program obtained in this study still has a lot of

room for improvement in terms of data transmission rate, which increases the transmission time to a

certain extent while ensuring accuracy. In the future research direction, more modules can be added to

reduce the lack of transmission rate, and other modules can also be added to realize the possibility of

data transmission in different aspects.

References

[1] Tan Ch 2023 Design of ping-pong mode high-speed data acquisition system based on STM32

with asynchronous FIFO. Electrotechnical Materials vol 01 p 55-59+63

[2] Zhan Y Z 2022 A high-speed asynchronous FIFO for 100Gbit/s Ethernet PCS Microelectronics

vol 52 no 5 p 886-892

[3] Clifford E 2022 Simulation and synthesis techniques for asynchronous FIFO design SNUG 2002

Synopsys Users Group Conference vol 281

[4] Ying X 2023 Asynchronous FIFO Design Based on Verilog Highlights in Science, Engineering

and Technology vol 38 p 965-970

[5] Zhang Z 2023 Optimization of Asynchronous FIFO Design Difficulties Using Verilog HDL

Highlights in Science, Engineering and Technology vol 38 p 956-964

[6] Li H Wang Q 2021 Asynchronous FIFO design based on Verilog HDL Electronic Design

Engineering vol 29 no 19 p 107-111+116

[7] Kumari P 2016 Implementation of asynchronous FIFO and interface it with UART Int J VLSI

Syst Des Commun Syst vol 4 no 5 p 0390-0394

[8] Chen T 2022 A delay-controlled asynchronous FIFO circuit design Microelectronics vol 52 no

01 p 42-46

[9] Sun Y Ren Y Fan Y 2023 Asynchronous FIFO anti-SEU design Modern Electronic Technology

vol 46 no 11 p 160-164

[10] Hu D 2024 Review on the Usage of Synchronous and Asynchronous FIFOs in Digital Systems

Design Engineering vol 16 no 3 p 61-82

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering

DOI: 10.54254/2755-2721/72/20241025

171

