

FPGA-based SPI serial communication

Taozhe Liu

School of Electricity, Xi'an Jiaotong University, Xi'an, 710049, China

ltzhssfg@stu.xjtu.edu

Abstract. With advances in computer and IoT technology, the realization of the Internet of

Everything is just around the corner. Synchronous serial bus communication with simple, high-

speed interfaces and easy implementation will become a key player in the electronics industry.

However, due to factors such as I/O resources, timing constraints, and register resources, general

microcontrollers have various problems. The serial bus communication of I/O simulation has a

low transmission rate and cannot achieve true full duplex communication. SPI is a standard for

serial transmission introduced by Motorola in the United States. It is a high-speed, full-duplex,

synchronous communication bus. Peripheral chips with SPI interface are abundant and widely

used. This design uses Verilog HDL language to describe the function, based on the FPGA

platform, verifies the SPI serial communication protocol, and realizes the serial communication
between the sender and the receiver. SPI has important research significance for enhancing the

stability of inter-device communication, improving communication speed and transmission

security in the future.

Keywords: Serial port communication, SPI, Verilog HDL.

1. Introduction

The 21st century is the age of intelligent living. The Internet of Things is getting better every day.
Pervasive and edge computing applications are becoming more and more widespread. The construction

of smart cities continues to advance. In the context of the times, the process of communication between

various devices and modules grows to an unprecedented scale. However, the communication and control

between the sensor devices and the host controller as well as the devices in various application scenarios
rely on various interfaces. With the continuous development of the electronics industry, the complexity

of sensor devices and the growing volume of transmitted data have higher requirements for

communication than ever before. Bus-based communication becomes the primary means of transmitting
control information and data [1].

SPI is a standard for serial transmission introduced by Motorola in the United States. It is a high-

speed, full-duplex, synchronous communication bus that supports serial data exchange between master
and slave devices. SPI is a more efficient data transfer protocol, with only four pins in the chip for

control and data transfer, simple structure, and save PCB space. SPI serial communication bus is

increasingly integrated into chips as a communication interface due to its simple and easy-to-use

structure and fast communication speed [2,3]. The SPI bus hardware is very powerful and is often used
for serial communication between microcontroller units (MCU) and various peripheral devices [4,5].SPI

is also widely used in power equipment, such as smart microgrids and various types of sensors [6,7], to

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241021

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

157

provide communication for the successful operation of the equipment. In the future, SPI is important for

enhancing the stability of inter-device communication [8], increasing the communication rate, and

strengthening data encryption and transmission security [9].
This design will implement an SPI interface based on FPGA, and complete the send and receive data

test to verify the SPI interface function. The implementation process mainly contains three aspects of

communication protocol analysis, interface logic analysis and design, and communication simulation
and verification.

2. SPI communication protocol

2.1. SPI interface signals and system composition

The SPI interface is simple. It uses four signal lines to complete the data transfer, which are the two data
receiving/transmitting pins (MISO, MOSI), the slave selection signal CS pin and the SPI's clock pin

(SCK) [10]. The specific functions are described in Table 1.

Table 1. SPI interface pinout.

Signal Pin Name functionality

MOSI(master output and slave input) Bidirectional Data Transfer Cable

MISO(slave output and master input) Bidirectional Data Transfer Cable

CS(Slave Selection Signal)
When the SPI needs to communicate with the slave, it will

set this signal to an active level.

SCK(Serial clocks)
SPI clock with bi-directional clock edge operation for

synchronized data transfer.

SPI specifies that communication between two SPI devices must be controlled by the master device

to the slave device. A typical SPI system configuration consists of at least one master, one or more

slaves. The master selects the slave(s) to be communicated with and sends a synchronization clock to
them via the chip select pin. They input and output data through the MOSI and MISO pins, respectively.

The exchange of data between the master and the slaves is accomplished like a ring shift register. The

general master-slave connection is shown in Figure 1.

Figure 1. SPI master-slave connection method.

2.2. Operating modes of SPI

The clock mode of SPI is determined by the clock polarity CPOL and the clock phase CPHA. CPOL=0

means that the idle state of the serial synchronous clock SCK is low 0 when there is no pulse. CPOL=1
means that the idle state of the serial synchronous clock SCK is high 1 when there is no pulse,. CPHA=1

means that data is sampled on the first rising or falling edge of the serial synchronous clock SCK.

CPHA=1 means that data is sampled on the second rising or falling edge of the serial synchronous clock

SCK. CPHA=1 means that the data is sampled at the second rising or falling edge of the serial

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241021

158

synchronization clock SCK. SPI0 means CPOL=0/CPHA=0. SPI1 means CPOL=0/CPHA=1. SPI2

means CPOL=1/CPHA=0. SPI3 means CPOL=1/CPHA=1. the most commonly used modes are SPI0

and SPI3. SPI can configure CPOL and CPHA according to the requirements of the peripheral devices.
The clock polarity and phase of the SPI's main module and the peripheral device should be the same

[11]. The four modes of operation of SPI are shown in Figure 2.

Figure 2. SPI four modes of operation.

3. Design ideas

The basic objective of this design is to implement a synchronous serial communication interface by

writing Verilog code on ModelSim SE software. The experimental results are obtained by waveform

observation and analysis on the software.

3.1. Basic module architecture

The SPI protocol verification module designed in this project can be roughly divided into three types of

interfaces. Firstly, the system interface is responsible for transmitting the system clock signal and
resetting the signal. Secondly, the configuration interface is responsible for configuring the master and

slave selection, working mode, and data transmission format of the SPI interface. Thirdly, pin control

interface: accountable for setting signals such as enabling the output of pins. The block diagram is shown
in Figure 3.

Figure 3. SPI block diagram.

The specific functions of each interface are as follows: I_clk is the system clock. I_rst_n is the system

reset. I_tx_en is the enable signal for the host to send data to the slave, and the host can only send data

to the slave when I_tx_en is 1. I_rx _en is the enable signal for the host to receive data from the slave,
and the host can only receive data from the slave when I_rx_en is 1 I_data_in is the parallel data to be

sent by the host. O_data_out is the parallel data after parallelizing the serial data received back from the

slave. O_tx_done is the flag bit for the host to send data to the slave, and a high pulse will be generated

after the sending is completed. O_rx_done is the flag bit for the host to receive data from the slave, and
a high pulse will be generated after the receiving is completed. I_spx _en is the enable signal for the

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241021

159

host to receive data from the slave, when I_rx_en is 1, the host can receive data from the slave.

O_rx_done is a flag bit for the host to receive data from the slave, which generates a high pulse when

receiving is completed. I_spi_miso, O_spi_cs, O_spi_sck, and O_spi_mosi are four wires specified by
the standard SPI bus protocol.

This module is designed to use a finite state machine to implement the entire system state transition

process. The signals such as clocks on which the state transitions depend are generated by the clock
logic.

3.2. Transmitter module design

When the FPGA sends a byte (8-bit) of data over the SPI bus, first the FPGA sets the CS chip select

signal of the selected slave to 0, indicating that it is ready to start sending data. The whole process of
sending data can actually be divided into 16 states. State 0: SCK is 0, MOSI is the highest bit of the data

to be sent, i.e., I_data_in[7]; State 1: SCK is 1, MOSI stays unchanged; State 2: SCK is 0, MOSI is the

second highest bit of the data to be sent, i.e., I_data_in[6]; State 3: SCK is 1, MOSI stays unchanged
and so on. When the status number is even transmited the data sequentially from high to low until one

byte of data is sent. When the status number is odd, MOSI remains unchanged. The state transfer

diagram of the transmitter module is shown in Figure 4.

Figure 4. State transfer diagram of the sending module.

After a byte of data has been sent, a send completion flag O_tx_done is generated and the CS signal

is pulled up to complete a send. By looking at the above states, it can be seen that the operations to be
performed by the states with an odd number of statuses are practically the same. So when writing code,

in order to streamline the code, all the states with an odd number of statuses can be integrated together.

3.3. Receiver module design
When the FPGA receives a byte (8-bit) of data via the SPI bus, first the FPGA sets the SS chip select

signal to 0, indicating that it is ready to start receiving data. The whole process of receiving data can

actually be divided into 16 states. Unlike the sending process, the data must be sampled right in the

middle of the data in order to ensure that the received data is accurate. So each state of the receiving
process performs the following operations: state 0: SCK is 0, do not latch the data on MISO; state 1:

SCK is 1, latch the data on MISO, i.e. assign the data on MISO to O_data_out[7]; state 2: SCK is 0, do

not latch the data on MISO; state 3: SCK is 1, latch the data on MISO that is, assign the data on MISO
to O_data_out[6]. When the status number is odd the data is stored in order from high to low. No data

is saved when the status number is even. The state transfer diagram of the transmitter module is shown

in Figure 5.

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241021

160

Figure 5. State transfer diagram of the receiver module.

After a byte of data has been received, a reception completion flag O_rx_done is generated and the

CS signal is pulled high to complete the reception of data. By observing the above states, it can be seen

that the operations to be done in the states with even numbered states are actually the same. So when
writing the code, in order to streamline the code, all the states with even numbered statuses can be

integrated together. This is just the opposite of the state of the sending process.

4. Simulation results analysis

In order to verify the implementation of this design, it is necessary to design the test excitation signals
on ModelSim SE software and observe the resulting waveforms for data sending and receiving

verification.

4.1. Transmitter module emulation
The simulated waveform of the transmitter module is obtained as shown in Figure 6.

Figure 6. Simulated waveform of transmitter module.

The waveform initially pulls the send data enable signal high, indicating that it is the master sending

data to the slave at this time. The chip select signal is pulled low after pulling the reset signal high to

indicate the start of the data-sending process, after which the data transfer begins. When the status
number increases from zero to fifteen, a send completion flag bit O_tx_done is generated and the CS

signal is pulled high to complete a data transfer. During the data transfer, the counting of the status

number is based on the clock signal O_spi_sck sent from the master to the slave. After eight falling
edges of the clock, a one-bit transmission completion flag is generated, indicating that one data

transmission is complete. the data from I_data_in is saved into O_spi_mosi.

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241021

161

By observing the simulated waveforms obtained from the analysis it can be seen that they are

consistent with the expectations.

4.2. Receiver module simulation
The simulated waveform of the receiver module is obtained as shown in Figure 7.

Figure 7. Receiver module simulation waveform.

The waveform initially pulls the receive data enable signal high to indicate that it is the host receiving

data from the slave at this time. The chip select signal is pulled low after pulling the reset signal high to
indicate the start of the data reception process, after which data transfer begins. When the status number

increases from zero to fifteen, a receive completion flag bit O_rx_done is generated and the CS signal

is pulled high to complete a data reception. During the data transfer, the counting of the status number
is based on the clock signal O_spi_sck sent from the master to the slave. A transmission completion flag

is generated after eight clock rising edges to indicate that one data transfer is complete.The data from

I_spi_miso is stored in O_data_out.

From the simulation waveforms, the SPI communication protocol is well verified.The correctness of
the functionality and timing of the SPI protocol transmit and receive modules was confirmed by

analyzing and verifying the simulated waveforms. The transmitter module is able to accurately send one

byte of data from the host to the slave and generate the transmit completion flag bit. At the same time,
the receive module is able to accurately receive the data sent from the slave as expected and generate

the corresponding flag bit when each data is received. This simulation verification provides a solid

foundation for the subsequent hardware implementation and ensures that both the SPI transmitter and

receiver modules can work stably and reliably. In practical applications, the module can meet the
requirements of real-time and accuracy of data sending and receiving, and provide a guarantee for the

normal operation of the system.

5. Conclusion

This paper describes the design of an FPGA based module for serial port communication. Through the

SPI protocol, using a finite state machine, the SPI serial port transmit timing and receive timing are

designed respectively. Through software simulation, the accuracy of data transmission is verified and
the send/receive function of SPI protocol is realized. This simple and reliable design has strong

operability and application value for FPGA in the development of SPI serial port communication.SPI

protocol has important research significance for the future to enhance the stability of communication

between devices, improve the communication rate, and strengthen data encryption and transmission
security. With the continuous evolution of science and technology, SPI communication protocol will

continuously adapt to new needs and provide a solid foundation for reliable communication between

devices.

References

[1] Chen M C Wei C F 2022 Asynchronous serial communication design based on Xilinx FPGA

platform Computer Knowledge and Technology vol 18 no 36 p 65-67+74
[2] Du L 2022 Design and realization of SPI interface memory chip test system. University of

Electronic Science and Technology

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241021

162

[3] Li L 2015 Design and verification of SPI protocol reusable IP softcore based on Verilog HDL

Lanzhou University

[4] Han Y 2017 Design and verification of SPI interface in WIFI chip Xi'an University of Electronic
Science and Technology

[5] Crepaldi M Merello A Salvo M Di 2021 A Multi-One Instruction Set Computer for

Microcontroller Applications in IEEE Access vol 9 p 113454-113474
[6] Si Y Korada N Ayyanar R Lei Q 2021 A High-Performance Communication Architecture for a

Smart Micro-Grid Testbed Using Customized Edge Intelligent Devices (EIDs) With SPI and

Modbus TCP/IP Communication Protocols in IEEE Open Journal of Power Electronics vol 2

p 2-17
[7] Carimatto A 2018 Multipurpose, Fully Integrated 128 Event-Driven MD-SiPM With 512 16-Bit

TDCs With 45-ps LSB and 20-ns Gating in 40-nm CMOS Technology," in IEEE Solid-State

Circuits Letters vol 1 no 12 p 241-244
[8] Lv L Han Ch H 2022 Design of wireless fire signal conversion module based on SPI bus

technology. Journal of Jilin Normal College of Engineering and Technology vol 38 no 3 p 91-

94
[9] Wei X Tu Zh 2014 Design and realization of terminal security chip based on SPI interface

communication. Information Security and Communication Secrecy vol 9 p 188-190

[10] Xu Y 2020 Design and verification of high-speed SPI interface circuit Xi'an University of

Electronic Science and Technology
[11] Lin D 2012 SPI interface design based on OR1200 IP core University of Electronic Science and

Technology

Proceedings of the 2nd International Conference on Functional Materials and Civil Engineering
DOI: 10.54254/2755-2721/72/20241021

163

