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Abstract. The development of advanced AI has been transforming the biomedical field. The 

emergence of multi-modal biomedical data such as imaging, sequencing, and other omics data 

further enabled the training of AI models for complex analytical tasks. However, such data 

analysis remains challenging due to the difficulty of integrating information from different 

modalities. In this paper, we aim to address this challenge by proposing a methodology to 

integrate image and molecular structure data. We present the Contrastive Structure-to-Image 

Pretraining (CSIP) framework, which leverages a self-supervised Graph Neural Network (GNN) 

to encode molecules and images into a joint feature embedding space. This direct mapping 

between the two modalities enables a wide variety of applications, including image profiling and 

clustering of molecules based on their effects on cell morphology. Image profiles generated by 

CSIP archived an average AUC of 0.708 on various biological activity prediction tasks, rivalling 

the state-of-the-arts and outperforming some fully supervised methodologies. Further, CSIP 
improved the accuracy of image-molecule matching by 29-folds from the random baseline after 

being trained on a small dataset, which demonstrated data efficiency. The code to reproduce our 

results can be found at https://github.com/LeoL18/CSIP. 

Keywords: Image-based Profiling, Multi-modal Data, Graph Neural Network, Contrastive 

learning. 

1.  Introduction 

Multi-modal biological data contains multiple modalities such as imaging data, sequencing data, or 

molecular data, providing rich information of biological entities. As modalities vary significantly in their 
statistical properties, integrating multi-modal data for biomedical applications such as diagnostics poses 
several challenges in need of further research. First, different modalities measure different sets of 
features with varying dimensions, which makes integration difficult. Furthermore, the distinct nature of 
each modality makes it difficult to generalize any method of analysis across modalities. The 
determination of the relative importance of each modality during integration also remains a topic to be 
researched. If these challenges are not addressed, studies of correlations between different modalities 

will be limited. 
Thus, more effective methodologies for integrating multi-modal data will be very useful to the 

biomedical research community. Indeed, multiple beneficial applications may arise from new 
approaches to combine multi-modal data. For example, single-cell profiling with integrated multi-omics 
data was shown to have strong downstream performances [1]. Joint model of scRNA-seq and spatial 
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transcriptomics was capable of imputing missing gene expression measurements on a cell-level basis 
[2]. Integrating radiology, pathology, genomic, and clinical data also enabled deep learning methods to 
yield better cancer prognosis predictions than uni-modal models [3]. 

To leverage the potential of multi-modal data, many past studies focused on encoding data from 

different modalities to a joint embedding space. This approach bypasses the obstacle of dealing with 
data of non-uniform dimensions. However, there are some drawbacks associated with past 
methodologies. [4] used canonical correlation analysis to maximize the correlation of pairwise linear 
projections of features. However, this approach suffers from more complex data which cannot be 
mapped to a latent space through linear projection. [5] used a loss function that enforced the pairwise 
distance of points in the joint embedding space of scRNA-seq and scATAC-seq data to reflect the 
pairwise distances of the data in their respective modality space. However, this metric is computationally 
expensive, as it requires the calculation of diffusion distance up to 40 iterations, which makes it difficult 

to scale with larger batch size. [6] proposed CLOOME, which leveraged a contrastive learning paradigm 
to encode molecules and cell images to a joint embedding space. However, molecules are sent to the 
joint space by applying transformers to encode the corresponding SMILES strings, which hinders the 
extraction of molecular topology.  

 

Figure 1. Overview of CSIP. We used CellProfiler to calculate the coordinate for each cell and 
constructed a cell-graph based on pairwise distances. For each cell, a morphological feature vector was 
computed using an autoencoder. GNN was then applied on the resulting cell-graph and features to obtain 

the final embedding. 

To address the above shortcomings, we present the CSIP framework, which leverages GNN to 
generate joint embeddings for molecules and cell images. GNN is inherently suitable for encoding 
molecules as it can operate directly on the molecular topology, which other frameworks (e.g. 
transformers) have to learn from scratch. In addition, GNN also requires less computational resources 

to encode images than more conventional methods such as Convolutional Neural Network (CNN). To 
train the model, contrastive learning is employed so that the model learns to generate similar latent 
embeddings for positive, or matched molecule-image pairs. Cosine similarity, which is computationally 
inexpensive, is used to measure distance in the latent space to calculate the contrastive loss. 
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We envision three applications for this framework. CSIP can generate cell image embeddings for 
downstream tasks such as mechanism-of-action classification and bio-activity prediction. From the 
chemical structure of the molecule, CSIP can predict the change in cell morphology when the molecule 
is used to treat the cell. In addition, the ability to infer the structure of a molecule from image of cells 

treated by that molecule enables CSIP to identify replacement molecules with similar effect on cells. On 
a Cell Painting dataset [7] with around one million 5-channels cell images and 30, 616 different 
compound perturbations, CSIP correctly identified the compound used to treat the cells in the input 
image with top-5 accuracy and top-10 accuracy 120 times and 220 times higher than random guessing, 
respectively. Further, across 209 bio-activity prediction tasks, image profiles generated by CSIP 
achieved an average AUC of 0.708 and F1 of 0.373. These results rivalled the previously best-
performing models and even outperformed some fully supervised methodologies. 

2.  Related Work 

Analyzing biomedical multi-modal data With a variety of modalities, multi-modal data provides both 
complementary information to aid prediction and redundant features shared by multiple modalities to 
guard against noisy data [8]. However, the extraction of this rich information poses a challenge to 
traditional methods used for uni-modal data. Past studies developed a variety of new methodologies for 

leveraging the rich information in multi-modal data. A straightforward way to integrate multi-modal 
data is to concatenate the feature vectors from each modality, which [8] termed “Early Fusion”. [9] used 
concatenated features selected from the gene expression and DNA methylation data as input to a feed-
forward network to predict Alzheimer’s disease. Similarly, [10] combined multi-modal gene profiles as 
input to a deep neural network to yield prediction for cancer survival. On the other hand, some studies 
proposed the use of multiple independent discrete encoders, each modelling data from a specific 
modality. [11] trained multiple autoencoders to model RNA-Seq, miRNA-Seq, and methylation data. 
Likewise, [12] used a concatenation of latent features from modal-specific variational autoencoders as 

input to a feed-forward network. In addition, some studies used unsupervised learning to train models 
with multi-modal data. In particular, [13] used Spearman’s correlation to determine the pairwise 
correlation of over a thousand features from various modalities and leveraged Louvain community 
detection to identify biologically functional subnetworks. [14] utilized an image registration network to 
model the noise in biomedical images to improve the performance of Generative Adversarial Network 
(GAN) on image translation tasks. 
 

    

    

    

Figure 2. Sample dyed images from the dataset we used [7]. The original images in the dataset have 

five channels with resolution 696 × 520. 
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Graph-based learning for identifying biological correlation Guilt by-association is a popular 
principle in the biomedical field, which states that associated genes are more likely to share similar 
function. This principle inspires analysis of biomedical knowledge graph to discover new associations 
between biological entities. Often times, such analysis is conducted with graph-based learning. [15] 

modelled drug-drug interaction (DDI) by applying GNN on biomedical knowledge graphs to learn 
generic node embeddings, which were then fine-tuned through sub-graph learning to predict DDI. [16] 
used random walks on knowledge graph to generate drug and disease embeddings for drug repurposing. 
To address the lack of drug and disease nodes in knowledge graphs, the authors proposed the use of 
teleportation guided by semantic information obtained from hierarchical similarity. [17] used GNN to 
model molecular associations. Node embeddings were fused at each propagation step, which the authors 
claimed to have improved the classification results. In addition, past studies showed that graph-based 
learning can also be used in image segmentation tasks. For example, [18] used Graph Convolutional 

Network (GCN) for semantic segmentation. Specifically, the authors first leveraged CNN to transform 
image into graph, after which GCN was used for node classification to determine the label for each pixel 
of the original image. 

Contrastive learning for multi-modal data In contrastive learning, unlabelled data points are 
compared against each other to teach the model to recognize similar (positive) and different (negative) 
pairs. This method has recently achieved success in learning multi-modal data. One notable example is 
CLIP [19], which used contrastive learning to learn a joint image-text embedding space. When 

contrastive learning is used for analyzing multi-modal data, a separate encoder is trained for each 
modality to map inputs into a joint embedding space where modality data belonging to the same sample 
have adjacent embeddings. Since contrastive learning is well-suited to large, unlabelled dataset, it is 
very promising in the medical field, where labelled data is rarely available. [6], inspired by [19] and 
[20], leveraged a contrastive learning paradigm to learn joint image-molecule embeddings. Similarly, 
[21] used contrastive learning to match chest X-rays and their corresponding reports. Sometimes, 
however, data might not come with a clear division into positive and negative pairs. In that case, positive 

pairs can be created by generating new samples from each sample of the original data, where each new 
sample represents a feature of the original sample. For example, [22] extracted radiomic features and 
deep features from histopathological image to form positive pairs. [23] applied small perturbations on 
images to create positive pairs and trained an encoder to minimize the distance between embeddings of 
positive pairs. Metadata from MRI can also be used to form positive pairs [24]. 

3.  Materials and Methods 

3.1.  Dataset 
We used a Cell Painting dataset with a variety of compound perturbations [7] as our dataset (Figure 2). 
The dataset consists of human U2OS osteosarcoma cells imaged over five channels (RNA, ER, AGP, 

Mito, and DNA) in 384-wells plates. Each well received a different form of compound perturbation 
targeting a specific gene in the cells, with some wells receiving DMSO to be used as controls. In each 
well, 6 images were taken at different sites. After applying quality control on the dataset, which filtered 

out blurry and saturated images, we obtained around 950,000  5-channels images with resolution 

696 × 520  representing 30,616 different compound perturbations targeting a variety of genes. We 

removed the top 0.02%  of the brightest pixels before normalizing each image to the [0,1] range. 
Illumination correction was then applied to the normalized images (i.e. dividing the image by the 
corresponding brightfield mask, which was obtained by taking an image over the light source after 
removing the cell specimen). 
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Figure 3. The CNN autoencoder we used to extract embeddings for each individual cell. The encoder 
consists of four identical blocks, with each block composed of a convolutional layer, a batch 
normalization layer, a pooling layer, and an activation function. Similarly, the decoder also has four 

blocks, with an extra convolutional layer at the end. 

3.2.  Data Preprocessing 
CSIP consists of an image encoder and a molecular encoder mapping inputs to a joint space, with both 

encoders using GNN as backbone. The use of GNN for image encoder necessitates a pipeline converting 
images to graphs. During this conversion, we sought to preserve two types of information: phenotypic 
features of cells and topology (cell-cell interactions). A graph is defined as a set of nodes and a set of 
edges connecting the nodes to each other. In our case, we used the cells in the original image as the 
nodes of the graph. This construction preserves phenotypic features of cells via node feature vectors. 
We then added edges between adjacent cells in the graph, thus retaining the cell-cell interactions. 

More specifically, we first used CellProfiler [25] to calculate the bounding box of each cell in the 

image. The center of each bounding box was treated as a node in the graph (Figure 1). We then trained 
a CNN autoencoder [26] to extract features from the 68 ×  68 pixels neighborhood of each cell (Figure 
3). We noted that the crop box sometimes missed the cell partially due to discrepancies in cell sizes. 

Thus, we enhanced the autoencoder by training it to repair the cell from an incomplete crop. CNN 
profiles have shown strong performances in the downstream tasks. 

To model cell-cell interactions in the original image, we computed the pairwise distances between 
cell centers and constructed edges between adjacent pairs. We used two parameters to control the size 

of the graph: 𝐿 and 𝑛. 𝐿 denotes the maximum distance between two nodes connected by an edge, and 

𝑛 denotes the maximum degree of each node. In our experiment, we set 𝐿 = 120 pixels and 𝑛 = 7. 
The processing of molecules, on the other hand, is relatively straightforward. We processed 

molecules using the procedure in [27]. Specifically, for each atom, several measures were extracted 
from the SMILES string using the Mol class of the rdkit module, including atom type, number of 
covalent bond (further divided into single bond, double bond, and triple bond), number of radical 
electrons, formal charge, hybridization, aromaticity, number of connected hydrogens, and chirality. Note 
that bond-related information was included in the extracted atom features. Then, a graph was constructed 

based on the chemical structure of the molecule, and atom features were assigned to the corresponding 
nodes on the graph. 
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3.3.  GNN Backbone for Both Encoders 
In this section, we define the GNN backbone used for both encoders in mathematical formulation. A 

graph 𝐺 is defined by its node set 𝑉 and edge set 𝐸, together denoted as 𝐺 = (𝑉, 𝐸). The edges can be 

described by the adjacency matrix 𝐴, where 𝐴𝑖𝑗 = 1 if there is an edge between node 𝑖 and node 𝑗. By 

default, 𝐴𝑖𝑖 = 1 for all nodes 1 ≤ 𝑖 ≤ |𝑉|. At every timestep 𝑡 ≥ 0, each node 𝑢 ∈ 𝑉 has an embedding 

ℎ𝑢
(𝑡)

. The initial set of embeddings {ℎ𝑢
(0)

|𝑢 ∈ 𝑉} are obtained from CNN autoencoder and then clamped 

to [−4,4] to prevent slow training induced by large numbers. If (𝑢, 𝑣) ∈ 𝐸, then 𝑢 is connected to 𝑣 by 

an edge with a weight 𝑊𝑢𝑣 , which is defined as 

 𝑊𝑢𝑣 = {
max (

1

2
, 1 −

dist(𝑢,𝑣)

𝐿
) dist(𝑢, 𝑣) ≤ 𝐿

0 dist(𝑢, 𝑣) > 𝐿
 (1) 

with dist(𝑢, 𝑣) being the distance between 𝑢 and 𝑣. 

 

Figure 4. An overview of the image encoder. Each cell embedding is aggregated with the embeddings 
of neighboring cells, and the resulting cell embedding is mapped to the next layer of the model through 
a MLP block. Graph embeddings were generated at each timestep, and an importance score was 
computed for each graph embedding by an LSTM block. The final embedding is calculated by 

concatenating the graph embeddings scaled by their respective importance scores. 

At each timestep 𝑡 ≥ 1, the node embedding ℎ𝑢
(𝑡)

 is updated by itself ℎ𝑢
(𝑡−1)

 and all of it neighbors 

{ℎ𝑣
(𝑡−1)

|(𝑢, 𝑣) ∈ 𝐸}. For each update, we scale the features from neighboring nodes with respect to 𝑊𝑢𝑣 . 
Specifically, we compute the features in each update by the formula 

 ℎ̂𝑢′(𝑡) = Agg ({𝑊𝑢𝑣 ⋅ ℎ𝑣
(𝑡−1)

|(𝑢, 𝑣) ∈ 𝐸}) (2) 

 ℎ̂𝑢
(𝑡)

= (1 + 𝜖) ⋅ ℎ𝑢
(𝑡−1)

+ ℎ̂𝑢′(𝑡) (3) 

where 𝜖 is a trainable parameter determining the importance of ℎ𝑢
(𝑡−1)

. For the Agg operation, we used 
the sum of neighboring features. Then, node features are updated by 
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 ℎ𝑢
(𝑡)

= Norm (GeLU (MLP (ℎ̂𝑢
(𝑡)

))) (4) 

where Norm denotes the graph-wise normalization from [28]. More conveniently, the update of node 
features can be written as 

 𝐻(𝑡) = Norm(GeLU (MLP(𝑊𝐻(𝑡−1) + 𝜖𝐻(𝑡−1))) (5) 

where 𝐻(𝑡) denotes the concatenation of all node features {ℎ𝑢
(𝑡)

|𝑢 ∈ 𝑉} at the timestep 𝑡. 
After each update, we pool the updated node features and generate the graph embedding at the 

timestep 𝑡 

 ℎ𝐺
(𝑡)

= Pool ({ℎ𝑢
(𝑡)

|𝑢 ∈ 𝑉}) (6) 

One naive way to pool the nodes is summation. However, this approach fails to consider the 
continuous nature of node embeddings. When summation is used for the Pool operator, the graph 

embeddings become almost identical even for different graph inputs, which makes the embeddings not 
representative of the original inputs. This is because the node features are sampled from a continuous 
distribution, and variance decreases as more node features are summed. Thus, we use element-wise 

maximum for pooling to obtain distinguishable graph embeddings. We compute ℎ𝐺
(1)

, ℎ𝐺
(2)

, ⋯ , ℎ𝐺
(𝑚)

, 

where 𝑚 is the number of layers. 
It has been previously noted that GNN tends to converge to fixed node embeddings with a large 

number of layers [29,30]. This problem is known as over-smoothing in the literature [31,32]. To alleviate 
this issue, we use graph embeddings from all timesteps to compute a final readout. Previous 
methodology suggests the use of concatenation [33]. We further use a LSTM block to learn an 

importance score 𝑝 for graph embedding at each timestep. Graph embeddings are sequentially passed 

into the LSTM block, which generates an importance score 𝑝𝑡 corresponding to the graph embedding 

ℎ𝐺
(𝑡)

 at each timestep 0 ≤ 𝑡 ≤ 𝑚. We then obtain the final embedding of the graph by concatenating 

 ℎ𝐺 = Concatenate{ℎ𝐺
(𝑡)

𝑝𝑡|0 ≤ 𝑡 ≤ 𝑚} (7) 

3.4.  Contrastive Loss Function 

 
Figure 5. Training pipeline of CSIP. Each image forms a positive pair with its corresponding molecule. 
Of the rest of the molecules in the batch, the ones with highest latent similarity with the image form hard 
negative pairs. The model is trained to maximize the similarity of latent representations between positive 
pairs and to minimize the similarity between hard negative pairs. 
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The goal of our framework is to map molecules and images to a shared, latent embedding space. Ideally, 
positive pairs of molecule and image should be close to each other in this space, and negative pair should 
be separate. Further, it is desired to have a structured embedding space for generalization. To accomplish 
this, we adopted a similar strategy to OpenAI’s CLIP [19]. We first normalized the image embeddings 

x ∈ ℝ𝑛×𝑑 and molecule embeddings y ∈ ℝ𝑛×𝑑 to unit vectors, where 𝑛 is the number of samples and 𝑑 
is the dimension of the embedding space. Next, we employ the cosine similarity, represented by 

Softmax(x ⋅ y𝑇), to compute the similarity of each image with respect to the molecules. Finally, the 
model is trained to maximize the similarity of positive pairs 

 𝐿𝑃 = −
1

𝑛
∑ 𝜏−1𝑛

𝑖=1 x𝑖y𝑖
𝑇 (8) 

where 𝜏−1 is a temperature parameter controlling the model’s confidence in its predictions. 
We also have to account for negative pairs in the loss function to keep them separate. However, 

optimizing with respect to all negative pairs within a batch might lead to noisy gradients. Thus, we 

sample negative pairs with the highest similarity, known as hard negative pairs [34], to be used in 
optimization. This sampling can be accomplished by 

 𝐿𝑁 = −
1

𝑛
∑ 𝑙𝑛

𝑖=1 𝑠𝑒 (𝜏−1(xy𝑇 − 𝑑𝑖𝑎𝑔(xy𝑇))
𝑖
) (9) 

where 𝑙𝑠𝑒 denotes the log-sum-exponent function, which is used as an approximation of max to select 
the hard negative pair. Combining the two objectives of training, we obtain the loss function 

 𝐿 = 𝐿𝑃 + 𝐿𝑁 = −
1

𝑛
∑ ln𝑛

𝑖=1

exp(𝜏−1x𝑖y𝑖
𝑇)

∑ exp𝑗≠𝑖 (𝜏−1x𝑗y𝑗
𝑇))

 (10) 

which agrees with the InfoLOOB loss as derived in [20]. This training objective ensures positive pairs 
to be close to each other and negative pairs to be separate. Further, embeddings are normalized so that 
they all lie on a unit hypersphere, which ensures a structured embedding space. 

4.  Experiments and Results 

4.1.  Implementation Details 
We used three layers of GNN, thus enabling each node to aggregate information from a 3-hop 

neighborhood. Adam optimizer [35] with decoupled weight decay regularization [36] and a cosine 

scheduler [37] was used to train the model. Edges were randomly dropped with a probability of 𝑝 = 0.3 
to alleviate over-fitting and over-smoothing [38]. We searched for the suitable hyperparameters using a 
combination of manual tuning and bayesian optimization by training a smaller version of the model on 

a subset of the data. We used size 64 for node feature vector, which produced a latent space with 192 

dimensions. A base learning rate of 5𝑒 − 3 was used to train the model for 5 warm-up epochs, after 
which a cosine scheduler was applied. Gradient clipping of 1.0 was applied to all parameters of the 

model. A large mini-batch size of 2048 was used to alleviate the problem of gradient bias [39]. Mixed 
precision was also utilized to save memory and to accelerate training. 

4.2.  Molecule Retrieval 

In this experiment, we tested the ability of CSIP to correctly identify the molecules used to treat the cells 
in the input images. Note that matching molecules to images is a very difficult task, since cells often 
exhibit very subtle morphological changes when treated by molecules. Further, due to the large number 
of molecules in the dataset, it is possible that there exists multiple of them inducing similar 
morphological effects on the cells. Thus, low accuracy is expected for this task. 
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Figure 6. CSIP can be used to retrieve molecular structures from images. On the evaluation set, CSIP 

achieved a 15% top-5 accuracy, which is a strong performance. Indeed, the reverse is also possible due 

to the joint latent space. 

To evaluate the accuracy of CSIP on the retrieval task, we first partitioned a dataset of 200,000 
randomly sampled image-molecule pairs into five equal subsets. We then left out one subset for 
evaluation and trained the model on the rest. This process was repeated for four more times, with a 
different set being left out for evaluation each time. Average top-1 accuracy, top-5 accuracy, and top-

10 accuracy were recorded. We then re-sampled the dataset and applied the same evaluation procedure, 

for a total of 5 trials.  

Table 1. Top-1, top-5, and top-10 retrieval accuracy for CSIP and other baseline methods. 95% 
confidence interval for the accuracy of each method were calculated through 5 trials of evaluation. CSIP 

delivered a strong performance when compared against the baselines. 

Method Top-1 Top-5 Top-10 

Random 0.001 ± 0.000 0.006 ± 0.002 0.012 ± 0.004 

1-MLP 0.023 ± 0.088 0.140 ± 0.092 0.263 ± 0.011 

CSIP 0.034 ± 0.008 0.148 ± 0.011 0.296 ± 0.028 

Table 2. Folds of improvement of each method from random retrieval. 

Method Top-1 Top-5 Top-10 

1-MLP 19.52 118.54 222.02 

CSIP 29.01 124.68 250.19 

 
We also tested three different baselines on the same task for comparison. First, we reported the 

accuracy of random matching. Next, we tested an alternative version of CSIP with the GNN backbone 
for the image encoder replaced by a one-layer MLP. Finally, we compared CSIP to a previous 
methodology. 

We noted that our model achieved a 29-folds improvement in top-1 accuracy from the random 

baseline and a 1.5 -folds improvement from the 1-MLP baseline (Table 2). These significant 
improvements validated the use of GNN backbone for the image encoder. The result also suggested that 
modelling cell-cell interactions through graph-based learning improved retrieval accuracy, since CSIP 
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performed significantly better when GNN was used. Lastly, our model rivaled CLOOME [6], which 

achieved a 34-folds improvement in top-1 accuracy from the random baseline. It should be noted, 
however, that their model was trained on a larger dataset. Our model, in comparison, was trained on 

only 160,000 samples for the sake of evaluation.  

4.3.  Image Embedding 
We adopted the evaluation procedure in [27] to determine the performance of CSIP image embeddings 

in downstream tasks. For each of the 10,574 molecules in the dataset, its chemical activities in 209 
different assays were collected and represented as binary values, indicating whether the molecule was 

active or inactive in a specific assay, thus creating a label matrix. However, over 97% of the entries 
were missing in this matrix as relevant information were unavailable on the ChEMBL database. To 
address this issue, all empty activity labels were masked out in both training and evaluation. The task of 

predicting the label matrix from the embeddings can be interpreted as 209 independent downstream 
binary prediction tasks, and the performance of the embeddings on these tasks indicates their quality of 

representation.  
During evaluation, the use of complex models must be avoided to ensure that the classification 

performance is indicative of the representation quality of the embeddings, since complex models might 
deliver strong performance even if the representation quality of the embeddings were poor. Thus, we 
used a simple bilinear model 

 𝑦̂ = 𝜎(x𝑇Wy) (11) 

to predict compound activities from the embeddings, where σ is the sigmoid function and W is a 
trainable weight matrix. For this experiment, we used the same dataset as [27]. First, we splitted the 
dataset into a training set, a validation set, and a testing set. The model was then trained on the training 
set until validation accuracy stopped increasing. After training, average AUC score on the testing set 

across all tasks was reported. A high AUC score on a specific task indicates strong transferability of the 
embeddings to that task. We also reported the F1-score to account for unbalanced classification tasks. 

Further, we recorded the number of the 209 tasks for which an AUC score above 0.7, 0.8, or 0.9 was 
observed. 

For baselines, we adopted the models in [27], which consists of various CNN architectures trained 
in a fully supervised setting. In addition, we used a contrastive learning framework [6] as another 
baseline.  

Table 3 suggests that CSIP image embeddings transferred well to the prediction of bioassay activities. 

CSIP achieved an AUC of 0.708 ± 0.13 and a F1 of 0.373 ± 0.22 across all prediction tasks, which is 
an improvement from CellProfiler and CNN autoencoder features. We also noted that CSIP 
outperformed some fully supervised CNN in the experiment. This result is very surprising, since CSIP 
was trained without labels. 

Table 3. Experimental results from the 209  binary classification tasks. CSIP achieved a strong 

performance comparing to the baselines. 

Type Method AUC F1 AUC > 0.9 AUC > 0.8 AUC > 0.7 

Transfer CSIP 0.708 ± 0.13 0.373 ± 0.22 49 79 105 

 CLOOME 0.714 ± 0.20 0.395 ± 0.32 57 84 109 

 CellProfiler 0.655 ± 0.20 0.273 ± 0.32 35 63 84 

 Autoencoder 0.634 ± 0.31 0.254 ± 0.36 28 59 76 

Supervised ResNet 0.731 ± 0.19 0.508 ± 0.30 68 94 119 

 DenseNet 0.725 ± 0.19 0.530 ± 0.30 61 98 121 

 GapNet 0.711 ± 0.18 0.510 ± 0.29 63 94 117 

 MIL-Net 0.705 ± 0.19 0.445 ± 0.32 61 81 105 

 M-CNN 0.705 ± 0.19 0.482 ± 0.31 57 78 105 

 SC-CNN 0.705 ± 0.20 0.362 ± 0.29 61 83 109 

 FNN 0.675 ± 0.20 0.361 ± 0.31 55 71 90 
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5.  Discussion 

We present CSIP, a contrastive learning framework capable of mapping molecules and images to a joint 

embedding space. CSIP achieved strong performances in both molecule retrieval and biological activity 
predictions. In particular, the use of contrastive learning eliminates the need of labelled data, which is 
rarely available in high-throughput projects. Furthermore, since CSIP was trained without explicit labels, 
image embeddings generated by CSIP hold potential for zero-shot predictions. This enables CSIP to 
make inference on a large set of compounds without extremely extensive training. Thus, CSIP serves as 
a preliminary step towards the development of query systems based on cell morphology for large 
compound databases.  

The use of GNN for the image encoder rather than a more conventional choice such as CNN serves 
two purposes. First, GNN can be easily scaled up for larger graphs by adding more layers, enabling them 
to learn extremely large images such as whole slide images. These images can be as large as 

100,000 × 100,000 pixels, which is very difficult to be learned by CNN. In addition, GNN is very light 

in both memory and computation. CSIP has only 120,000 trainable parameters in total, most of which 
coming from fully connected layers. On the other hand, most deep CNNs have well over a million 
parameters and require extensive training on multiple GPU cores. 

The use of GNN to learn molecules is easily justified. Molecules are inherently graphs, which makes 
graph-based learning a natural choice. On the other hand, using architectures such as transformer, which 
looks at relationships between all atoms at once, might lead to the learning of unwanted relationships 
between atoms. GNN does not suffer from this issue, since information is passed between atoms through 
the edges representing bonds. Thus, GNN is well-suited to learning molecular structures. 

However, we acknowledge some limitations with our approach. At the cost of lightness, CSIP 
requires data preprocessing including image segmentation and extraction of cell features. Furthermore, 
a very large batch size is needed during the training of CSIP, since a large number of negative pairs must 
be sampled to effectively identify hard negative pairs. Nevertheless, there has been a recent interest in 
redesigning contrastive learning to overcome the problem of a large batch size [40][41], which might 
address this issue in the future. We acknowledge these limitations and leave them for further studies. 
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