
Design of an image processing system for heterogeneous

computer architectures

Yizhou Meng

Northeastern University, Boston, MA, United States

mengyizhou95@gmail.com

Abstract. Embedded real-time image processing systems are widely applied in various fields,

enhancing visual experience and making life more convenient. With the development of

embedded processors and operating systems, as well as in-depth research into image processing

algorithms, the effects and speed of image processing have been significantly improved. This

paper proposes an embedded image processing system design based on the current technological

developments, centered around the Zybo processor. This includes a collaborative hardware and

software design, specific hardware circuit design, and the design of a system software platform.

The paper also discusses the establishment of a development environment for the Zybo system,

the transplantation of the Linux operating system, the design of the file system, and the

application of OpenCV library functions in image processing.

Keywords: Heterogeneous, Embedded, FPGA, Linux, Computer Vision.

1. Introduction

With the development of electronic technology, computer technology, and semiconductor processes,

embedded digital image processing systems are continuously improving in computational performance

and becoming increasingly feature-rich. As a current research focus both domestically and

internationally, embedded digital image processing has been widely applied in various engineering

fields, primarily including digital communications, space exploration, remote sensing imaging,

biomedicine, industrial production, and weather forecasting [1].

Traditional digital image processing systems are mostly based on image acquisition cards, general-

purpose computers, and image processing software. Their performance is constrained by the CPU

architecture, computer bus, and printed circuit technology, making it difficult to meet the system

requirements for volume, power consumption, and cost in embedded image processing applications [2].

The emergence of embedded processors (DSPs, ARMs, etc.) has provided embedded solutions for image

processing applications, satisfying the technical specifications for volume and power consumption.

However, they fail to meet the requirements for computing performance [3].

1.1. Research Background and Significance

Driven by the rapid development of integrated circuit technology, the scale of FPGA programmable

logic devices is increasing, and costs are gradually decreasing. With the maturation of FPGA technology,

embedded applications for image processing are likely to significantly improve computational

performance [4]. An FPGA is a programmable logic array that includes configurable logic blocks

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

350

(CLBs), input-output blocks (IOBs), and interconnect buses [5]. FPGA's dynamic reconfiguration

feature allows for driver and algorithm development through hardware description languages. Users can

design specific functional modules by configuring the FPGA's internal logic blocks to achieve specific

functions [6]. Current FPGA devices have high integration and can fully meet the system's required

number of gates during development, reducing system costs and size. FPGA internally processes logic

and algorithms in hardware circuits, with delays reaching nanoseconds. Its internal parallel operation

mode enhances algorithm execution speed. Due to FPGA's ability to quickly process algorithms, it is

widely used in image processing systems.

In response to the growing performance and functionality demands of embedded systems, Xilinx

integrates ARM Cortex-A9 processors with FPGA programmable logic resources, launching the All

Programmable System on Chip Zynq-7000 [7]. Zynq-7000 features both hardware and software

reprogramming, offering a "ARM+FPGA" single-chip solution. By integrating ARM processors, Zynq-

7000 fully utilizes existing embedded resources. By integrating FPGA resources, Zynq-7000 provides

high-performance computing capabilities. Zynq-7000's architecture enhances design efficiency and

resource utilization, providing flexibility for software and hardware co-design, making it ideal for

compute-intensive, feature-rich embedded application designs. This design uses the Zybo board from

the Zynq-7000 series as the hardware platform.

Using Zynq-7000 for embedded image processing system design allows for leveraging FPGA's

computational advantages in image processing and fully utilizing ARM processor-provided peripherals.

With Xilinx's HLS high-level synthesis design tool tailored for Zynq-7000 and the OpenCV computer

vision library, algorithm prototypes can be quickly developed. For lightweight image processing

applications, the validated design can be recompiled and run on Zynq-7000-based systems. For

compute-intensive image processing applications, the OpenCV prototype design can be quickly ported

to FPGA design, ultimately achieving hardware-accelerated image processing.

1.2. Research Overview

With the development of electronic technology, computer technology, and semiconductor processes, the

composition, technical parameters, design methods, and design tools of digital image processing systems

are also changing [8]. As an active branch of image processing, the emergence of embedded applications

is inseparable from the development of digital image processing systems. Looking at the development

process of digital image processing systems at home and abroad, it can be divided into the following

stages:

First stage: 1960s to 1980s. The most representative products of this stage are various image

computers and image analysis systems that appeared in the United States and the United Kingdom.

These systems adopt a chassis structure, with large volume, high price, and strong functionality. In China,

the representative products of image processing systems are the image computers and image acquisition

systems developed by Tsinghua University, which also adopt a chassis structure similar to the

representative products abroad [9].

Second stage: 1980s to 1990s. The characteristics of image processing systems in this stage are

miniaturization, using plug-in card structure and computers to form image acquisition systems. In China,

Tsinghua University and the Chinese Academy of Sciences have successfully developed a series of

image acquisition cards, which are characterized by low price, small size, and easy to use, and are very

popular among users [10]. The image acquisition cards in this stage are mostly made of large-scale

integrated circuits, with the mainstream computer being the PC, and the computer bus being the ISA

bus [11].

Third stage: 1990s to present. The products of this stage are roughly divided into two categories. The

first category still uses plug-in cards. With the popularity of the PCI bus, products with PCI interfaces

have basically replaced products with ISA interfaces [12]. In China, many companies have launched

PCI-based image cards, using PCI image cards to capture images and writing image processing software

on the Windows operating system [13]. Another category of products uses embedded solutions. With

the significant improvement in the integration and processing speed of digital signal processors (DSPs),

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

351

field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs), these

low-cost chips have become the mainstream devices for embedded image processing systems [13-19].

Since the 21st century, image processing systems based on ARM, DSP, and FPGA chips have achieved

a lot of research and development. Compared with image processing systems based on the PC platform,

embedded image processing systems have the advantages of small size, light weight, low cost,

outstanding performance, and simple system structure [14].

From a large number of domestic and foreign scientific experiments and related literature, it can be

found that in image processing systems based on embedded solutions, systems implemented using

FPGAs have outstanding performance in computational performance. However, considering the actual

system application requirements, solutions using FPGAs may face challenges in system structure and

cost. The Zynq-7000 SoC adopts the "ARM+FPGA" architecture, which will help improve the

shortcomings of FPGA solutions. This paper will focus on research related to the Zynq-7000 SoC and

ultimately achieve an embedded digital image processing system based on the Zynq-7000.

2. Materials and Methods

The main research aspects of the design of a digital image processing system based on heterogeneous

processors are as follows:

• In-depth study and research on the structural characteristics, design advantages, and

common solutions for image processing of the Zynq-7000 SoC.

• Based on the various functional modules of the image processing system, establish a

complete hardware platform in the Vivado design tool and establish a BSP support package

in the SDK development tool to achieve basic image processing pathways.

• Select appropriate underlying hardware modules to implement the image processing

functions of the underlying hardware.

• Port the Linux system and design software to implement the underlying hardware driver in

the onboard system.

• Port the OpenCV library in the onboard Linux system and use software to implement the

reading, restoration, transfer, and processing of captured images.

2.1. Basic Image Pathway

Zynq-7000 Board is a resource-rich and user-friendly entry-level embedded software and digital circuit

development platform. The main chip of this platform is the smallest model Z-7010 in the Xilinx Zynq-

7000 series. Based on the Xilinx All Programmable SoC architecture, the Z-7010 tightly integrates dual-

core Cortex-A9 ARM processors with Xilinx 7 series FPGA on the same chip. The Zybo platform

integrates a variety of multimedia peripheral interfaces, and the powerful Z-7010 chip supports complete

system design. On-board memory, audio/video interfaces, bidirectional USB, Ethernet, and SD card slot

allow you to complete the design without the need for additional hardware. Additionally, the 5 Pmod

interfaces provide ample expansion space. Zybo is a low-cost alternative to the Zedboard, suitable for

designs that do not require high-density FMC interfaces, while also balancing a large amount of

processing power and the scalability of the Zynq AP SoC architecture.

2.2. Hardware System

2.2.1. Image Input Module

The basic image acquisition module in the article uses the OV7670 sensor, and the output module uses

VGA output. The image transfer process uses the VDMA method to transfer images, and the image

processing module selects the image enhancement IP core provided by Vivado to perform basic

enhancement processing on the images.

The OV7670 sensor uses the Serial Camera Control Bus (SCCB) protocol, which is compatible with

the I2C protocol. Therefore, we use an I2C control module to drive this camera. The I2C control module

is shown in Figure 1.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

352

iCLK is a 25MHz driving clock input pin, and I2C_SCLK and I2C_SDAT are the clock output pin

and data output pin of the I2C protocol, respectively.

After the camera driver is completed, it is necessary to process the video stream information captured

from the camera. The image capture IP is shown in Figure 2.

The input signals include the control clock input signal CLK_i, pixel clock input signal cmos_pclk_i,

line refresh signal cmos_href_i, field refresh signal cmos_vsync_i, and data input signal cmos_data_i.

The output signals include the control clock output signal cmos_xclk_o, line refresh signal hs_o, field

refresh signal vs_o, three-channel RGB output signals rgb_o[23:0], and output enable signal vid_clk_ce.

 Figure 1. IIC Controller IP Figure 2. OV7670 Image Capture IP

2.2.2. Image Processing Module

Image enhancement is an IP core that comes with the Vivado tool from Xilinx, which integrates the

functionality of multiple IP cores from older versions, including image enhancement, noise suppression,

and halo suppression. As shown in Figure 3.

Figure 3. image enhancement IP

We remove the function of the control part of AXI-Lite, and only retain the image processing

function of the PL part, which can change the processing intensity and processing effect by directly

setting parameters. Just plug in the Video_in and Video_out the core ACLK signal.

2.2.3. Image handling Module

The design in this article is designed for the image processing part of the software, so the captured video

stream information needs to be stored in DDR so that the software can read it. Generally speaking, there

are two ways to transfer images: VDMA and DMA, and in this paper, the more convenient and fast

VDMA method is adopted. As shown in Figure 4.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

353

Figure 4. VDMA

VDMA stands for AXI Video Direct Memory Access. This IP is often featured in video-related

designs, and has a similar status to DMA, but unlike VDMA, it is a module that specializes in providing

high-speed storage access to video streaming data. Video data is accepted via the AXI-Stream protocol,

while control signals. e.g. frame buffer size, DMA function on and off, etc. are accessed via AXI-Lite

from other interfaces.

VDMA has two DMA paths, the S2MM path maps the input AXI4-Stream video stream to a specified

framebuffer, while the MM2S does the opposite, outputs the frame buffer to an AXI4-Stream video

stream. Figure 5 illustrates the basic principle.

Control and

Status
Registers

DataMover Line Buffer

AXI4-Lite

AXI4-Stream

AXI4 Memory Map

Figure 5. VDMA Functions and schematics

2.2.4. Image Output Module

The image output interface uses the VGA interface and uses Displayctrl IP. See Figure 6.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

354

Figure 6. Displayctrl IP

The IP accepts video stream data from the MM2S side of the VDMA and is controlled by Zynq

through the S_AXI side. The output interface needs to connect to several data required by the VGA,

including the row refresh HSYNC_0, field refresh VSYNC_0, and the red, green, and blue output

RED_0 [4:0], GREEN_0 [5:0], and BLUE_0 [4:0].

It is important to note that the IP core only accepts 32-bit ARGB signals, while we acquire 24-bit

RGB signals on the acquisition and transport side. According to the concept of ARGB's medium

transparent bit, we spliced 8 bits of transparency on the video stream before it flows into Displayctrl,

that is, all "0". These 8-bit results do not affect the image we capture, but it does affect whether

Displayctrl can output correctly.

2.2.5. Overall System

As mentioned in the above section of this article, the PL part of this design is divided into four parts:

input module, processing module, handling module and output module, plus PS part, which together

constitute a complete underlying hardware system. Figure 7 shows the system principle.

Control and

Status
Registers DataMoverLine Buffer

Line Buffer

Line Buffer

Figure 7. Schematic diagram of the system principle

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

355

The handling module is the core of the whole system, and it interacts with the processing and output

modules to complete the image acquisition and output work. By interacting with the Zynq core, the

video stream is delivered to DDR and removed.

Use Vivado's built-in Block Design tool to design the underlying hardware, and perform simulation,

synthesis, and placement and routing, as shown in Figure 2-8. From left to right, there is the acquisition

module, the processing module, the handling module and the output module.

Figure 8. Block Design

As we mentioned earlier, VDMA and Displayctrl are controlled by Zynq, which means that these

two IPs must be driven by software to work properly, so we use the SDK tools that accompany Vivado

to write the drivers.

Use the "Xil_Out32" function to write the number to the registers corresponding to the VDMA and

Displayctrl addresses. In the system.hdf of the SDK, we can find the starting address of the hardware,

and write the corresponding data to each address according to the function of the corresponding register

from the IP core introduction on the Xilinx official website to achieve the corresponding function. In

this article, we'll use the most basic features.

2.3. Linux

In this article, boot Linux from the board, select the SD card boot mode, and configure Zybo to boot on

SD card and power on USB.

2.3.1. The boot process of Linux

After the system is powered on, in non-JTAG mode, the PS side will first configure the system, and the

system will first run the code in the BootROM to complete the initialization of hardware devices such

as SD card, NAND, NOR, and Quad-SPI, and the DDR controller will be initialized after Stage 1.

The BootROM execution process is also responsible for loading the boot image of Stage1. The

system supports multi-level loading of user-initiated images, and when the Stage1 process is executed,

the user code will have control over the entire system.

The boot source of the system is selected by the external pins, that is, the BootROM loads the boot

image of Stage 1 from different external devices according to the configuration of the external pins.

FSBL is the boot program after the boot of BootROM, FSBL mainly completes the initialization of

the PS side, the configuration of the PL, the system can also not configure the PL part, load the second

stage of the boot program SSBL to the memory space. The peripherals are initialized first, and then the

image is booted from the SD card, and the FSBL stage code is loaded into the on-chip memory for

execution.

This phase of SSBL is mainly responsible for the initialization of the relevant system and the

preparation for the loading of the operating system. When the system is powered on, the operating

system is not in memory, but another program is needed to initialize the system and load the operating

system into memory, and the boot phase in this system is the SSBL phase. In this article, the system is

running the Linux operating system, and its SSBL is U-boot. When running FSBL, the system loads U-

boot to RAM to run, and U-boot (a function of U-boot) provides the hardware initialization part for

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

356

completing the Linux kernel before booting, and loads the Linux kernel into memory to run. At the same

time, U-boot also provides many user instructions, read and write memory, Flash, USB devices, etc.

After the system is booted through the SSBL phase, the system starts to run the Linux operating

system. Figure 9 shows a common partition organization for embedded Linux on the Zynq-7000

platform.

BootROM Header

reserved

Partition Header Table

FSBL Partition

Bitstream Partition

U-Boot Patition

Linux zImage Partition

Linux Device Tree Partition

Linux Disk Image Partition

Unused Space

Figure 9. Linux mirror structure

2.3.2. Linux Environment setup

To build and compile the embedded Linux system environment, the first step is to install the cross-

compilation environment The cross-compilation environment for the Zynq-7000 platform is arm-

xilinx-Linux-gnueabi-gcc, which is used to compile developed drivers and applications, as well as

various library functions, into executable code that is consistent with the Zynq-7000 instruction set.

• Compile U-boot

Embedded operating systems require bootloader booting to run in the system's memory, the FSBL

process. When booting embedded operating systems, U-boot (Universal Boot Loader) is often used [18].

U-boot supports the boot of a variety of embedded operating systems, including Linux, and is widely

used in various embedded systems due to its open source code, high stability and reliability, and flexible

configuration[19]. In this article, U-boot is chosen as the bootloader for the embedded operating system.

Compiling u-boot will generate several related system files in the directory of that path.

Run the following command in the VM:
make CROSS_COMPILE=arm-xilinx-Linux-gnueabi- zynq_Zybo_config

gvim ./include/configs/zynq-common.h

gvim ./include/configs/zynq_Zybo.h

Update config to make it read ramdisk,sdboot will be
"sdboot=if mmcinfo; then "

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

357

"run uenvboot; "

"echo Copying Linux from SD to RAM... && " \

"load mmc 0 ${kernel_load_address} ${kernel_image} && " \

"load mmc 0 ${devicetree_load_address} ${devicetree_image} &&" \

"bootm ${kernel_load_address} - ${devicetree_load_address};"\

"fi\0" \

make ARCH=arm CROSS_COMPILE=arm-xilinx-Linux-gnueabi-

Finally, change the resulting executable file u-boot to a format that can be recognized by xilinx's SDK

tools.
mv u-boot u-boot.elf

• Compile Linux Kernel and Device Tree

The Linux source code needs to be configured according to the system, and the system file image needs

to be made after compilation, and the system file image needs to be put into the SD card or Flash during

the actual runtime, and booted into the system memory through U-boot when the system starts.

Before compiling the kernel source code, the source code needs to be configured to meet the hardware

requirements of the system.
root > make ARCH=arm digilent_zed_deconfig

Compile the Linux kernel.
make ARCK=arm CROSS_COMPILE=arm-xilinx-Linux-gnueabi-defconfig

make ARCH=arm CROSS_COMPILE=arm-xilinx-Linux-gnueabi-menuconfig

gvim ./arch/arm/kernel/setup.c

pr_info("Booting Linux on physical yeranCPU 0x%x\n", mpidr);

gvim ./init/main.c

make ARCH=armCROSS_COMPILE=arm-xilinx-Linux- gnueabi-

UIMAGE_LOADADDR=0X00008000 uImage

make ARCH=armCROSS_COMPILE=arm-xilinx-Linux- gnueabi-

LOADADDR=0X00008000 uImage

cp ./arch/arm/boot/uImage /mnt/

After the compilation is successful, the uImage file will be generated.

The default device tree source file is in the digilent-zed.dts directory in the arch/arm/boot/dts

directory. Before compiling the device tree source file, you need to modify the device tree source file of

the system. The controlled custom IP core used in this design, i.e., Displayctrl, needs to be described in

the Devicetree.

With the description of the upper layer, we have obtained the three files that are necessary to boot

Linux from the SD card, namely Boot.bin/uImage/devicetree. Put these three files into the SD card,

insert the SD card into the card slot on the Zybo board, power on, and open Zybo to start Linux. Using

the serial port tool, set the baud rate to 115200. We will be able to see the Linux boot successfully as

shows in Figure 10.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

358

Figure 10. Linux Boot

2.4. mmap

Now we need to drive these low-level hardware in the same way you drive VDMA and Displayctrl in

the SDK. However, Linux does not support direct reading and writing of registers corresponding to the

underlying hardware address space, so we introduced mmap.

2.4.1. mmap schematic

mmap maps a file or other object (such as an address in this case) into memory space. As shown in

Figure 11, these files (or others) are mapped to multiple pages, and if the size of the file is not the sum

of the sizes of all pages, the unused space on the last page will be zeroed. mmap plays an important role

in the user-space mapping invocation system.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

359

Shared memory object

mmap(addr, len, prot, flags, fd, offset);

offset

len

addr

len

Process address space

Figure 11. mmap

In our design, mmap will give the underlying address a new virtual address and store it in the memory

space, and the original driver only needs to use the new address.

2.4.2. function

In the Linux environment, we need to use the following functions to map the address of the underlying

hardware in the mmap mode.

• The header file used by the function

<sys/mman.h>

• Function archetypes

void* mmap(void* start,size_t length,int prot,int flags,int

fd,off_t offset);

int munmap(void* start,size_t length);

After we use the virtual addresses mapped by these mmaps, we need to free up this part of the space

used to store the virtual addresses, otherwise there will be problems. You can use the mmap and munmap

functions in turn to map and cancel the address in the Linux system.

2.5. OpenCV

Int this section, we are going to install OpenCV based on Linux environment.

2.5.1. cmake

OpenCV 2.2 or later versions require Cmake to generate makefile files, so you need to install cmake

first. It is relatively simple to install cmake under ubuntu, enter the command:
sudo apt-get install cmake

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

360

If you feel that the built-in version does not meet the requirements, you can download the installation

package. In this article, the download has been compiled, so you only need to unzip it to the desired

directory to use:
tar zxvf cmake-2.8.10.2-Linux-i386.tar.gz –C /usr/local/

Set environment variables:
sudo gedit /home/emouse/.bashrc

export PATH=$PATH:/usr/local/cmake-2.8.10.2-Linux-i386/bin

Enter the command to check the version and test whether the installation is successful:
cmake --version

The output information of the serial port is:
cmake version 2.8.10.2

2.5.2. OpenCV Installation

To install OpenCV in the Linux environment, first install libgtk2.0-dev and pkg-config, otherwise there

will be problems with the later compilation and running program, enter the command:
apt-get install libgtk2.0-dev

apt-get install pkg-config

Download OpenCV, unzip it, get the folder OpenCV-2.4.3, and create a new folder OpenCV-x86 here

as the PC compilation directory.

Use the Cmake directive to generate the makefile file directly:
cmake-DCMAKE_BUILD_TYPE=RELEASE-

DCMAKE_INSTALL_PERFIX=/home/Opencv

After that, you can enter the OpenCV-x86 directory to view the Makefile file, and pay attention to

whether the generation time of the file is consistent with the generation time just now, so as to determine

whether the Makefile file is generated correctly according to the settings of our configuration parameters.

Run make and make install in the OpenCV-x86 folder to complete the compilation and installation

process.

After the installation is complete, we need to configure the environment variables related to the system:
sudo gedit /etc/ld.so.conf.d/opencv.conf

Add the following to the end of the file:
/usr/local/lib

Finally configure the library and change the environment variables:

udo ldconfig

sudo gedit /etc/bash.bashrc

At the end of the file, add:
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig

export PKG_CONFIG_PATH

At this point, the installation process of OpenCV is complete, and we can use the built-in routine under

OpenCV to test the installation results.

2.6. Software-based image process

Building on the previous content, we'll start working on the software processing part. In the software

processing part, we need to solve several problems of compiling and running C/C++ files on the board,

and then we will use the image interception algorithm to perform software processing on the image.

2.6.1. Image Processing flow

In the previous chapter, it was mentioned that Linux cannot directly read the address of the underlying

hardware, and proposed an mmap solution, which will be used in this chapter to map the underlying

address through mmap so that OpenCV can read the image information that has been written into DDR.

After the mmap and the underlying address are assigned, OpenCV reads the underlying DDR frame by

frame. After reading another frame, the format is converted to Mat format and image processing is

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

361

performed. After processing, the image is converted back to ARGB format and written back to DDR.

At this point, one frame is processed, and each frame after that goes through this process to link the

image into a complete video.

Note that in the hardware path, VDMA will read and write the same pool area in DDR, and after the

introduction of OpenCV software processing, in order to avoid conflicts between images before and

after processing, different pool areas need to be set for VDMA to read and write. This is shown in Figure

12.

OpenCV

mmap mmapPool_A Pool_B

VDMA

Figure 12. OpenCV/VDMA

Based on the original design, it is sufficient to set the S2MM part to Pool_A and the MM2S part to

Pool_B. That is, the whole process is that the S2MM end of VDMA sends the video stream to the Pool_A

DDR, and OpenCV takes the video stream from the Pool_A, processes it by algorithms, and then returns

the processed video stream to the Pool_B, constituting the entire video processing loop.

2.6.2. Compilation

OpenCV's library functions are very rich in content, supporting C/C++, Python and other languages.

The code for the processing part of this article is .cpp, while the code for the mmap part is .c. In order

to be able to mix and compile the two languages in the onboard Linux environment, a new Makefile file

was written to adapt to the design.

• extern "C"

In order for the .c header files and functions to be referenced in .cpp files, the extern keyword needs to

be used. When it is used in conjunction with "C" (e.g. extern "C" void fun(int a, int b)), this keyword

tells the compiler to translate the function name of the function according to the rules of C when

compiling the function name of the function according to the rules of C instead of C++, and the rules of

C++ will make the name fun unrecognizable when translating the function name, because of

C++Support for overloading of functions, which is different from C. In this article, the main function of

the .cpp is used, and the other functions are .c functions.

• Makefile

GCC is a sub-project of the GNU Project, originally a compiler for compiling the C language. With the

growth of the GNU Project, GCC has become a family of GNU compilers capable of compiling

languages such as C, C++, Ada, Object C, and Java, as well as > cross-compilation across hardware

platforms. G++ is a compiler specifically designed to compile C and C++ languages. C and C++

languages are constantly evolving, and in order to keep the latest features of compatible programming

languages, developers usually choose GCC to compile the source code written in C and G++ to compile

the C++ source code. This article also takes this approach.

To install the GCC/G++ compiler, the installation command is as follows:

yum install make

yum install gcc

yum install gcc-c++

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

362

In the Makefile file, you need to use GCC to compile C code and G++ to compile C++ code, and the

main modifications of the file are as follows:
CCC = gcc

CPPCC = g++

LINK = g++

${BIN_TARGET}:${OBJ}

 $(LINK) $(OBJ) -o $@ $(LDFLAGS)

${DIR_OBJ}/%.o:${DIR_SRC}/%.c

 $(CCC) $(CFLAGS) -c $< -o $@

${DIR_OBJ}/%.o:${DIR_SRC}/%.cpp

 $(CPPCC) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@

2.6.3. Image format conversion

As mentioned in the previous section, the video stream in the underlying hardware is in 32-bit ARGB

format, which is suitable for image capture and playback devices. However, OpenCV generally stores

images in a different format, and generally uses the Mat type as the container for the image.

Basically, Mat is a class that consists of two data parts: a matrix header (which contains information

such as matrix size, storage method, storage address, etc.) and a pointer to a matrix that stores all pixel

values (different matrices can be different dimensions depending on the storage method chosen). The

size of the matrix header is constant, but the size of the matrix itself will vary from image to image, and

is usually orders of magnitude larger than the size of the matrix header. In contrast to traditional

IplImage's C struct types, Mat doesn't have to manually open up space for it, and frees up space as soon

as it's not needed.

In the MAT format, the three-channel image is arranged as BGR, which is different from the order

of the three colors in 32-bit ARGB. Therefore, these two format types need to be converted to each other.

In this paper, the RGB is reorganized into the form of BGR by shifting and splicing, and the format

conversion is completed. Before OpenCV writes back the image, the processed image is re-stitched into

the ARGB format to complete the image format conversion.

3. Results and Analysis

3.1. Image Pathway

After writing the driver, download the .bit file to the board, compile and run the software part, connect

the VGA interface to the monitor, and obtain the image captured by the camera. Figure 13 shows the

image captured by the OV7670.

Figure 13. Image captured by OV7670

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

363

The image size is 640*480, the refresh rate is 30 frames, and the image appears in the upper left

corner of the screen, which is conducive to our post-processing software. In a later section, we will look

at the effect of image position on OpenCV processing. After the original image is processed, the

enhanced image obtained is shown in Figure 14.

Figure 14. Image enhancement

Adjusting the parameter settings of image enhancement in Vivado to obtain the result after image

enhancement, you can see the obvious difference in detail of the image before and after processing. The

enhanced image is noticeably detailed, with a "smeared" feel at the edges of the details.

3.2. OpenCV image processing

Use the Rect function in the OpenCV library to take a screenshot of the image, and the original function

is as follows:
Rect(x,y,width,height)

The member variables x, y, width, and height are the coordinates of the upper-left corner and the

width and height of the rectangle, respectively. Commonly used member functions are Size() to return

a Size, area() to return the area of the rectangle, contains(Point) to determine whether the point is in the

rectangle, inside(Rect) to determine whether the rectangle is in the rectangle, tl() Returns the coordinates

of the upper left corner point, and br() returns the coordinates of the lower right corner.

In this design, the 640*480 image of the original image is cut into 640*240. The original image is

shown in Figure 15.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

364

Figure 15. Original image. The original image that has been transported by OpenCV is the same as the

original image we got before.

Figure 16. An image that has been processed by an image capture algorithm. The image after the image

capture algorithm is 640*240 resolution

4. Conclusion

Both heterogeneous concepts and embedded image processing are attracting more and more attention.

This paper proposes a heterogeneous architecture in embedded systems, which uses software and

hardware co-processing to process real-time images, which not only meets the requirements of

computing speed, but also takes into account the flexibility and power consumption of the system, which

is a very practical way of embedded real-time image processing. Compared to traditional image

processing methods, the advantages are obvious.

In order to build a heterogeneous embedded image processing system, the following aspects have

been completed in this paper:

• Vivado was used to build the underlying hardware system, complete the basic real-time image

processing path, and select the appropriate hardware processing IP core.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

365

• The porting of Zybo's on-board Linux system was carried out, and the writing of the board driver

was completed according to the characteristics of the Linux system.

• Finally, the installation and use of OpenCV was completed, the appropriate software image

processing algorithm was selected, and some important details involved were solved.

There is still a lot to be explored in the research of embedded solutions, and even the way to

implement the same solution is flexible and diverse. Due to the constraints of various conditions, the

following work needs to be done in order to continue the research on embedded image processing

schemes in this paper:

• Evaluation of hardware and software processing efficiency. The different processing characteristics

and processing advantages of software and hardware are judged through the effect and time of

different implementations of the same algorithm software and hardware, and more suitable software

and hardware algorithms are selected to theoretically accelerate the process of image processing.

• OpenCV read efficiency issues. The OV7670 used in this article has a refresh rate of 30 frames, while

the OpenCV read-processed image is lower than that. This is due to the limitations of the read and

write methods and the performance of the platform. It can be improved in future designs.

• In view of the characteristics of embedded processing, it should be the focus of future research to

study its processing ability for various existing image processing.

References

[1] Abhijeet Kumar, Rachana Rajpal, Harshad Pujara, et al. Universal Interface on Zynq SoC with

CAN, RS-232, Ethernet and AXI GPIO for Instrumentation & Control[J]. Fusion Engineering

and Design, 2016.

[2] Qiang Wu. Research on the High Speed Image Transfer based on the Zynq-7000[C]. Proceedings

of 2016 2nd Workshop on Advanced Research and Technology in Industry Applications, 2016 :

5.

[3] Jiao Zaiqiang Design and implementation of embedded digital image processing system based on

Zynq-7000[D]. Taiyuan University of Technology, 2015

[4] Ning Ma. High Efficiency On-Board Hyperspectral Image Classification with Zynq SoC[C].

Proceedings of 2016 7th International Conference on Mechatronics and Manufacturing, 2016 :

6.

[5] Pan Ruijie, Chen Biao, Liu Xi'an The history and development of programmable logic devices[J].

Electronics & Packaging, 2008, 08(9): 44-48

[6] Wang Yu Research on embedded real-time image processing system based on Zynq-7000[D].

Huazhong University of Science and Technology, 2015

[7] Yang X, Luo J, Hao S U, et a1. High-Speed Image Acquisition and Real-time Processing System

Based on Zynq-7000[J]. Electronic Science & Technology, 2014.

[8] Huang Shuxian Design Method of Visual Image Processing System Based on MATLAB

Platform[J]. Journal of Yangtze University: Zike Edition, 2005, 2(4): 158-160

[9] Wang Qiang Design and implementation of a real-time image processing hardware platform[D].

Beijing Jiaotong University, 2009

[10] Liu Angju Research on hardware platform of real-time image processing system[D]. Beijing

Jiaotong University, 2008

[11] Wu Ying Design of DSP-based image acquisition and processing system[D]. Harbin Engineering

University, 2009

[12] Sun Rui Development of video image processing experimental platform[D]. Harbin Institute of

Technology, 2009

[13] Yang Huili Design of image processing platform based on embedded system[D]. Hebei

University of Science and Technology, 2009

[14] Wang J X, Yin C L. Embedded Color Image Enhancement System Based on DSP and FPGA[J].

Chinese Journal of Liquid Crystals & Displays, 2013, 28(3): 459-463.

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

366

[15] Wu Mingqi Performance study and comparison of typical embedded operating systems[D]. East

China Normal University, 2015

[16] Xue Yan, Jiang Hao Application of remote monitoring system based on ARM high-speed data

acquisition[J]. Process Automation Instrumentation, 2008, 29(10): 40-43

[17] Wu Fan Research on object tracking system based on ARM embedded platform[D]. Wuhan

University of Science and Technology, 2009

[18] Sea Ice Research and implementation of media digital signal processor simulator[D]. Zhejiang

University, 2014

[19] Yuan Qiulin Portable development and application of embedded Linux system based on ARM9

platform[D]. Northwest Normal University, 2014

Proceedings of the 2nd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/67/20240623

367

