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Abstract. This paper investigates the impact of camera image signal processing (ISP) algorithms 
on stripe structured light 3D reconstruction and explores the improvement of 3D reconstruction 
accuracy by photon input. Existing 3D reconstruction technologies have broad applications in 
fields such as intelligent manufacturing, healthcare, and consumer electronics, but their high 
precision requirements often cannot be met by current ISP algorithms. By using handheld 
devices to capture images and combining key techniques such as the multi-step phase shifting 
method, multi-frequency phase unwrapping method, and triangulation method, this paper 
conducts an in-depth study on the application of photon input in 3D reconstruction. The study 
demonstrates that using non-visual information (RAW images) as input can significantly 
improve reconstruction accuracy, producing more accurate results compared to images processed 
by ISP. The paper also quantifies the impact of ISP processing on 3D reconstruction results by 
comparing the depth information and point cloud data of two sets of images. Experimental results 
show that disabling certain ISP algorithms, such as bilateral noise filtering (BNF), edge 
enhancement (EEH), and non-local means denoising (NLM), can further improve reconstruction 
accuracy and reduce errors. In conclusion, this paper proposes a photon image-based 3D 
reconstruction method that, combined with artificial intelligence technology and differentiable 
point cloud rendering techniques, holds promise for achieving higher precision and faster 3D 
reconstruction. This technology is of great significance in practical applications, particularly in 
the field of industrial close-range 3D reconstruction. 

Keywords: 3D reconstruction, stripe structured light, image signal processing, point cloud, 
medical imaging. 

1.  Introduction 
3D reconstruction technology is a cutting-edge research field currently widely used in AR, VR, 
surveying and mapping, cultural heritage reconstruction, medical imaging, high-precision mapping, 
game development, image entertainment, autonomous driving technology, and more. Internationally, 
3D reconstruction research teams started earlier and have substantial technical accumulation. In contrast, 
China started late, has fewer practical results, and lacks core competitiveness. Currently, most popular 
3D reconstruction software and tools in the Chinese market are developed abroad, with most of the 
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market dominated by foreign companies such as Autodesk, Capturing Reality, Acute3D/Context 
Capture, PhotoModeler, and EDDA Technology (a subsidiary of EDDA USA). Structured light 
technology is one of the most widely used technologies in the field of industrial close-range 3D 
reconstruction, known for its high precision, insensitivity to weak textures, fast detection speed, and 
high resolution. One of the most common categories of structured light is stripe structured light, as 
shown below: 

 
Figure 1. Stripe Structured Light 

Currently, structured light 3D reconstruction technology often sacrifices time to improve accuracy. 
From a software perspective, reducing time means reducing the number of patterns needed for single-
frame 3D reconstruction. Researchers have made significant efforts in this area. The research group led 
by Professors Qian Chen and Chao Zuo at Nanjing University of Science and Technology established 
the theoretical framework for stripe structured light phase shifting [1] and temporal phase unwrapping 
[2], proposing a series of composite encoding methods such as dual-frequency phase shifting [3], 2+2 
step phase shifting [4], geometric constraint composite phase shifting [5], speckle composite Fourier 
method [6], and micro frequency shift Fourier transform method [7]. 

From an algorithmic perspective, current mature image processing technology, ISP, is not suitable 
for high-precision 3D reconstruction. ISP processing aims for aesthetic appeal and adaptation to human 
visual observation, which involves certain distortions and compressions of the image, detrimental to 
research-level 3D reconstruction. Therefore, this paper implements 3D reconstruction of structured light 
using traditional graphics methods, reconstructing a set of ISP images and RAW images, and evaluates 
the improvement in reconstruction accuracy using point cloud differences, demonstrating that using non-
visual information as input can significantly enhance imaging accuracy. 

2.  Technologies Used 

2.1.  Stripe Structured Light 
Structured light technology is one of the most widely used technologies in the field of industrial close-
range 3D reconstruction due to its high precision and insensitivity to weak textures. One of the most 
common categories within structured light is stripe structured light, as shown below: 
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Figure 2. The measurement of stripe structured light 

The measurement of stripe structured light mainly consists of a projector and a camera. Sine stripes 
are generated by computer programming, and the projector projects these sine stripes onto the object 
being measured. The camera captures the degree of bending of the stripes modulated by the object. By 
demodulating these bent stripes to obtain the phase and then using corresponding algorithms to process 
the phase, depth information can be calculated. 

2.2.  Multi-Step Phase Shifting Method 
Wrapped phase ϕ refers to the phase directly obtained from the modulated sine stripes, with the interval 
between[0,2π]. Continuous phase is obtained by unwrapping the wrapped phase Φ combined with the 
fringe order k. 

 
Figure 3. Phase Relationship Diagram 

One method to obtain the wrapped phase is the multi-step phase shifting method. Taking the three-
step phase shifting method as an example, the principle is as follows:  In the phase shifting method, 
sinusoidal intensity modulated fringe patterns are projected sequentially onto the object surface. The 
deformed fringe distribution captured by the camera can be expressed as: I! = A(x, y) +
B(x, y)cos[ϕ(x, y) − 2πn/3]  ,where A(x, y)  is the average intensity related to the background 
brightness and pattern brightness, B(x, y) is the modulation intensity related to pattern contrast and 
surface reflectivity, n is the phase shift order, ϕ(x, y) is the corresponding wrapped phase map. The 
wrapped phase can be solved using the following equations: 

Φ(𝑥, 𝑦) = 𝑡𝑎𝑛"#
∑ 𝐼$(𝑥, 𝑦)𝑠𝑖𝑛(2π /3)%
$&'

∑ 𝐼$(𝑥, 𝑦)𝑐𝑜𝑠(2π /3)%
$&'

 

2.3.  Multi-Frequency Phase Unwrapping Method 
Since the wrapped phase obtained above is not continuous, there can be phase ambiguities when finding 
corresponding points. Therefore, the multi-frequency temporal phase unwrapping method is used to 
unwrap the wrapped phase. Under structured light of different frequencies (taking two frequencies as an 
example), we obtain the following two equations: 

Φ((𝑥, 𝑦) = ϕ((𝑥, 𝑦) + 2π𝐾((𝑥, 𝑦) 
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Φ)(𝑥, 𝑦) = ϕ)(𝑥, 𝑦) + 2π𝐾)(𝑥, 𝑦) 

where k* and k+ are the integer parts of the fringe orders at low and high frequencies, respectively. The 
low-frequency phase Φ+ = ϕ+ is recovered using a unit frequency pattern, so no phase unwrapping is 
needed. Using the equation: 

𝑘((𝑥, 𝑦) = 𝑅𝑜𝑢𝑛𝑑 K
(λ)/λ()Φ)(𝑥, 𝑦) − ϕ((𝑥, 𝑦)

2π
M 

where Round[] denotes the rounding function. The dual-frequency method can be extended to multi-
frequency methods. In this project, four frequencies are used. 

2.4.  Triangulation Method 
The key to triangulation is finding corresponding points using epipolar constraints and unwrapped phase. 
This step is similar to stereo measurement. The projector is also treated as a camera in the stripe 
structured light method. We need to find the corresponding point for each point in the camera matrix in 
the projector matrix using the principle of epipolar constraint. 

 
Figure 4. Triangulation Diagram 

As shown, the epipolar constraint describes the constraint formed when the same point projects onto 
images from two different perspectives. With the known   and system calibration parameters, the range 
of  can be reduced to a line, the epipolar line. By finding the point on the epipolar line with the same 
unwrapped phase as , we obtain the corresponding point. With corresponding points, the depth 
information of point p can be calculated. Obtaining depth information requires world coordinates. Using 
corresponding points and camera parameters, a linear homogeneous equation system can be constructed: 

𝐴, = 0																								𝐴 =

⎣
⎢
⎢
⎡
𝑃#, ∗ 𝐾1- − 𝐾1#
𝑃#. ∗ 𝐾1- − 𝐾1%
𝑃%, ∗ 𝐾2- − 𝐾2#
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⎥
⎥
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																	𝑥 = Y

𝑥/
𝑦/
𝑧/
𝑤
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By performing singular value decomposition on A, the coordinates of each world point can be solved, 
thereby solving the depth map and point cloud. 

3.  Results and Analysis 

3.1.  Deployment on Handheld Devices for Testing 
To verify the effectiveness of the proposed algorithm, we used TensorRT to deploy the neural network 
on a handheld device. The handheld device was used in real-world applications to test its reliability and 
identify any shortcomings. 
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Figure 5. Handheld Device (The device used for this test is shown in this image) 

3.2.  Comparison and Analysis 

3.2.1.  Image Acquisition and Preprocessing 

 

Figure 6. Example of Stripe Images from Group A 
Figure 7. Example of Stripe Images from Group B 

At this stage, the structured light projected by the equipment has a frequency of 64. The structured light 
projected by the equipment has a frequency of 64. 

 
Figure 8. Functions Called During ISP Processing and Their Explanations 

We selected the raw information and set this group of images as Group A. The images processed by 
ISP were set as Group B. We used traditional graphics methods to calculate the depth maps and point 
clouds of these groups of images and compared the two groups. 

3.2.2.  Depth Information Analysis of Images 
Then, the phase of both groups of images was unwrapped to obtain the unwrapped phase matrix. Using 
MATLAB software, the phase maps were plotted (using the image() function), and it was initially 
observed that the accuracy of the information in the ISP-processed images was relatively lower. 
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Figure 9. Unwrapped Phase Map of Group A  
Figure 10. Unwrapped Phase Map of Group B 

Next, the depth maps were further calculated for verification. 

 

Figure 11. Calculated Depth Map of Group A  
Figure 12. Calculated Depth Map of Group B 

3.2.3.  Comparison and Analysis of Depth Information Differences 

 

Figure 13. Difference Map of Depth Maps of Both Groups (Normalized values from 0 to 0.05mm). 
Lower Image: Corresponding Color and Depth Value Differences 

Although differences can be observed from the depth maps, to clearly demonstrate the differences in 
depth values between the two groups, the depth maps were subtracted, and the differences were made 
absolute and normalized to obtain the difference map. This illustrates the impact of ISP processing on 
depth information. 
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3.2.4.  Point Cloud Rendering and Noise Removal 

  

Figure 14. Point Cloud of Group A Rendered Using Geomagic Software 
Figure 15. Point Cloud of Group B Rendered Using Geomagic Software 

To eliminate noise interference and improve the credibility of the results, we further rendered the point 
clouds and removed most of the noise points. 

 

Figure 16. Color Rendering and Statistical Histogram of Points at Different Distance Values (Total of 
581,992 points) 

 
Figure 17. Distribution of Points at Different Distance Values  

Figure 18. Statistical Results of Average Distance 

Since a visual comparison of the point clouds alone could not clearly show the differences, we used 
CloudCompare software to load the two point clouds. Taking the point cloud of Group A as a reference, 
the distance from each point to the nearest point in Group B's point cloud was calculated. Based on the 
distance values, different colors were rendered, and the distances were statistically analyzed, as shown 
below. According to the point cloud comparison, it was found that most points with a distance greater 
than 0.1mm were noise points, so we only statistically analyzed points with distances from 0mm to 
0.1mm. 

3.2.5.  Discussion of Results 
Based on the statistical results and distribution view, it was found that the distance between the point clouds of Group A and 
Group B mostly ranged between 0~0.04mm, with an average value around 0.035mm. There was a significant discrepancy in 
the point cloud distribution, especially on steep surfaces of the object, indicating that the 3D reconstruction results of ISP-
processed images and raw images differ significantly. A difference of 0.035mm constitutes a substantial precision loss in the 
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field of close-range industrial 3D reconstruction. Therefore, the preliminary work can initially demonstrate that 3D 
reconstruction based on photon information has higher accuracy. 

3.3.  Further Analysis and Discussion 

3.3.1.  Effects of Enabling and Disabling Different ISP Algorithms 
We further analyzed and discussed the significant image processing algorithms in ISP, such as bilateral 
noise filtering (BNF), edge enhancement (EEH), and non-local means denoising (NLM), while keeping 
other ISP algorithms disabled unless necessary. The statistical results are summarized in the table below: 

Table 1. Impact of Different Algorithms on Results 

bnf eeh nlm Statistical Number  
of Points   

Statistical Number  
of Points   

Statistical Number  
of Points   

TRUE TRUE FALSE 611320 0.03522 0.00672 
TRUE FALSE TRUE 603274 0.03163 0.00587 
TRUE TRUE TRUE 599513 0.03231 0.00578 
TRUE FALSE FALSE 607993 0.03113 0.00567 
FALSE TRUE TRUE 595211 0.03139 0.00538 
FALSE FALSE TRUE 598782 0.02949 0.00525 
FALSE TRUE FALSE 597596 0.02747 0.00397 
FALSE FALSE FALSE 594336 0.02631 0.00371 

3.3.2.  Results and Discussion 
According to the statistical results, when the BNF, EEH, and NLM algorithms are all disabled, the mean 
deviation is minimal at 0.00371mm. In contrast, when certain ISP algorithms are enabled, the mean 
deviation increases significantly by 0.0002mm to 0.003mm compared to the state where BNF, EEH, and 
NLM algorithms are disabled, with error increments ranging from 7.01% to 81.13%. 

We analyzed these specific ISP algorithms. The BNF algorithm (Bilateral Noise Filter) effectively 
filters out random Gaussian noise in images but also smooths edge information, resulting in image 
blurring, which is a key reason for the accuracy degradation caused by the BNF algorithm. The EEH 
algorithm (Edge Enhancement) highlights certain information in the original image while weakening 
other information, enhancing image contrast. However, this algorithm introduces significant 
interference in depth map calculations for 3D imaging. Finally, the NLM algorithm (Non-Local Means 
Denoising) searches for similar regions in the image on a block-by-block basis and averages these 
regions, effectively removing Gaussian noise but causing some loss of image information accuracy and 
leading to a degree of result distortion. 

4.  Conclusion 
This study built code implementations for 3D reconstruction graphics using traditional computer 
graphics methods. It analyzed the 3D reconstruction of dental models by comparing depth maps and 
point clouds generated from non-visual information input (RAW images) and ISP-processed image 
information input, verifying that using non-visual information as input can enhance the accuracy of 
structured light 3D reconstruction. This technology also addresses the need for fast, high-precision 3D 
reconstruction across various fields. It can employ artificial intelligence techniques to learn the feature 
distribution of modulated light fields from photon images, reduce information loss caused by image 
signal processing, and, combined with differentiable point cloud rendering techniques, achieve 3D 
morphology reconstruction of objects from single-frequency structured light photon images. The 
research results, integrated with laboratory hardware systems, form an applicable handheld 3D imaging 
system. 
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