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Abstract. This paper presents a novel 3D object detection algorithm designed for Bird's Eye 

View (BEV) scenarios, which significantly improves detection capabilities by integrating spatial 

and temporal features. The core of our approach is the spatial-temporal alignment module that 

efficiently processes information across different time steps and spatial locations, enhancing the 

precision and robustness of object detection. We employ a temporal self-attention mechanism to 

capture the motion information of objects over time, allowing the model to correlate features 

across various time steps for identifying and tracking moving objects. Additionally, a spatial 

cross-attention mechanism is utilized to focus on spatial features within regions of interest, 

promoting interactions between features extracted from camera views and BEV queries. Our 

method also implements temporal feature integration and multi-scale feature fusion to enhance 
detection stability and accuracy for fast-moving objects and to capture multi-scale context 

information, respectively. The model employs an enriched feature set post alignment for 3D 

bounding box prediction, ascertaining the position, dimensions, and orientation of objects. We 

conducted experiments on two public datasets for autonomous driving – nuScenes and Waymo 

Open Dataset, demonstrating that our method outperforms previous BEVFormer and other state-

of-the-art methods in terms of detection accuracy and robustness. The paper concludes with 

potential future directions for optimizing the BEVFormer model's performance and exploring its 

application in broader scenarios and tasks. 
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1.  Introduction 

1.1.  The Significance of 3D Object Detection 
Autonomous vehicles require accurate perception of their surroundings to make the right driving 

decisions. 3D object detection, through depth information such as LiDAR and stereo cameras [1-2], 

provides the three-dimensional location and shape of objects. This allows vehicles to recognize and 
locate other vehicles, pedestrians, obstacles, and traffic signs. This perception capability far exceeds that 

of two-dimensional images, enabling autonomous driving systems to understand complex traffic 

environments more precisely. 
In autonomous driving, vehicles need to continuously plan paths and make decisions to ensure safe 

and efficient travel. The three-dimensional location information provided by 3D object detection makes 
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path planning more accurate [3-5]. For example, vehicles can choose the appropriate driving route based 

on the height and distance of obstacles ahead to avoid collisions. In addition, 3D detection can also help 

vehicles better judge the topography of the road, such as slopes and curves, which is crucial for path 

planning. 
In complex traffic environments, autonomous vehicles need to track the movement trajectories of 

dynamic objects (such as pedestrians, bicycles, other vehicles, etc.) in real time [5-9]. 3D object 

detection can provide accurate object location and velocity information, making tracking algorithms 
more reliable. This is crucial for predicting the behavior of other road users, preventing collisions, and 

achieving safe overtaking. 

1.2.  Previous Methods and Existing Deficiencies 

Historically, the BEVformer strategy was to first analyze temporal features and then spatial features, 
that is, to first extract the BEV image features of historical time steps [10-14], then extract the multi-

perspective image features of the current time step, and finally fuse spatiotemporal features to obtain 

high-dimensional image features that contain both historical temporal features and current spatial 
features. This method has some deficiencies. 

From the perspective of error accumulation, after analyzing the temporal features first, the analysis 

of spatial features is based on the already processed temporal features. If there is an error in the step of 
extracting temporal features, it is easy to propagate and amplify the error in the process. At the same 

time, if spatial information is not fully considered during the extraction of temporal features, the 

subsequent extraction of spatial features may not fully capture the complexity of spatial features, leading 

to errors. 
From the perspective of processing delay, the phased processing of temporal and spatial features may 

lead to a decline in real-time processing performance, which is not conducive to meeting the real-time 

requirements in applications with high real-time requirements such as autonomous driving. 

1.3.  Contribution Summary 

In response to the aforementioned deficiencies, we have designed and proposed an innovative solution 

that significantly enhances the performance of target detection in the Bird's Eye View (BEV) perspective 

by fusing temporal and spatial information in one go. This module uses advanced algorithms that can 
consider both temporal sequence data and spatial layout information simultaneously, thereby achieving 

more accurate and reliable target recognition in complex traffic environments. With this fusion strategy, 

our target detection system can better understand and predict the motion trajectories of target objects, 
providing more precise perception capabilities for autonomous vehicles. The application of this 

technology is expected to promote the development of autonomous driving technology towards a higher 

level of automation and intelligence. 

2.  Related works 

2.1.  3D Object Detection Based on Bird's Eye View (BEV) 

Traditional approaches to 3D perception have often addressed the tasks of 3D object detection and map 

segmentation as separate endeavors. In the realm of 3D object detection, initial techniques mirrored 
those used for 2D detection, typically relying on the prediction of 3D bounding boxes from their 2D 

counterparts. Some methods have evolved to leverage state-of-the-art 2D detectors and extend their 

capabilities to directly infer 3D bounding boxes for objects. There is also a paradigm that involves 
projecting learnable 3D queries into the 2D image space, sampling relevant features for the end-to-end 

prediction of 3D bounding boxes, all without the need for post-processing steps like NMS. 

Additionally, several methods have focused on converting image features into a Bird's Eye View 
(BEV) representation to predict 3D bounding boxes from an overhead perspective. This transformation 

is achieved by incorporating depth information, either through direct estimation or by utilizing a 

distribution of potential depths. Techniques such as voxel-based projections of image features onto a 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/88/20241617 

50 



 

 

predefined grid enable the creation of a voxel-based representation of the scene. More recent 

advancements have seen the integration of these approaches into frameworks that further explore and 

exploit the BEV perspective for enhanced 3D detection capabilities. 

2.2.  Transformer 
The Transformer model, introduced by Vaswani et al. in "Attention Is All You Need," has revolutionized 

the field of natural language processing with its innovative use of self-attention mechanisms [15-16]. 

This architecture dispenses with traditional recurrent neural network structures, enabling more efficient 
parallel processing and capturing complex dependencies in data. Its effectiveness has not only been 

proven in language tasks but has also been extended to computer vision and 3D object detection domains, 

where it has shown promising results in handling high-dimensional spatial data and enhancing multi-

modal feature fusion for improved detection performance. 

3.  Method 

3.1.  Overview 

 

Figure 1: Overview of the proposed method.  

(a) The encoder layer includes grid-shaped BEV queries and temporal-spatial cross-attention 

mechanisms. 
(b) In the temporal-spatial cross-attention, interactions are simultaneously conducted between the 

BEV queries of the current and the previous timestamps, as well as with image features of the regions 

of interest in space. 

3.2.  Proposed Alignment Method 

Our method is a 3D object detection algorithm tailored for Bird's Eye View (BEV) scenarios, as shown 

in Figure 1, which enhances detection capabilities by integrating both spatial and temporal features. 
Central to our approach is the spatial-temporal alignment module that efficiently processes information 

across different time steps and spatial locations to achieve more precise object detection. 

This module is designed with a cohesive set of features that work in unison to analyze data across 

dimensions: 
A temporal self-attention mechanism is employed to capture the motion information of objects over 

time, allowing the model to correlate features across various time steps for the purpose of identifying 

and tracking moving objects. 
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The module also includes a spatial cross-attention mechanism that focuses on spatial features within 

regions of interest, facilitating interactions between features extracted from camera views and BEV 

queries. 

We define BEV query representations within our framework, with each query corresponding to a 
specific position and size in 3D space, which aids in the accurate localization and prediction of objects.  

For the integration of features over time, our method implements temporal feature integration to 

merge features extracted from multiple frames, enhancing the detection stability and accuracy for fast-
moving objects by leveraging historical information. 

To detect objects of various sizes, our method may incorporate multi-scale feature fusion, combining 

features from different resolution maps to capture a multi-scale context from detailed to global 

information. 
After the alignment of spatial-temporal features, our model employs these enriched features for 3D 

bounding box prediction, ascertaining the position, dimensions, and orientation of the objects. 

Through these integrated mechanisms, our spatial-temporal alignment module allows the model to 
comprehend not only the instantaneous image content but also the temporal motion patterns of objects, 

thereby accomplishing robust and precise 3D object detection in intricate and dynamic settings. 

3.3.  Loss Function and Training Process 
Our method utilizes a multifaceted loss function for the optimization of the spatial-temporal alignment 

module, combining various loss components such as localization, classification, orientation, temporal 

consistency, multi-scale, and regularization. Each component is weighted to reflect its significance in 

the overall training objective. The training process is characterized by a series of iterative cycles where 
the network's parameters are refined through gradient descent, with the goal of minimizing the 

composite loss. Continuous evaluation on a validation set is essential to fine-tune hyperparameters and 

mitigate overfitting, all in pursuit of bolstering the model's capacity to accurately detect and classify 
objects within a 3D context from sequential imagery or point cloud inputs. 

4.  Experiments 

4.1.  Data and Introduction 

In this study, two publicly available datasets for autonomous driving, the nuScenes dataset and the 
Waymo Open Dataset, are used for experiments. 

The nuScenes dataset [17] contains 1000 scenes, each lasting approximately 20 seconds, with key 

samples annotated at a frequency of 2Hz. Each sample includes RGB images captured by six cameras, 
providing a 360° horizontal field of view (FOV). For detection tasks, the dataset includes 1.4 million 

annotated 3D bounding boxes from 10 categories. We performed the BEV segmentation task following 

the setup proposed by Philion, J., and Fidler, S. [18]. 
The Waymo Open Dataset [19] is a comprehensive autonomous driving dataset, comprised of 798 

scenes (training) and 202 scenes (validation). It's important to note that Waymo provides approximately 

252° horizontal FOV in the five images per frame, although the annotations cover a full 360° around the 

ego-vehicle. We removed the invisible bounding boxes in any image from both the training and 
validation sets. Due to the dataset's large size and high sampling rate, we used a subset of the training 

set. Specifically, we sampled every fifth frame from the training scenes and focused solely on detecting 

the vehicle category. We then calculated the mean Average Precision (mAP) on the Waymo dataset 
using 3D Intersection over Union (IoU) thresholds of 0.5 and 0.7. 

4.2.  Evaluation Metrics 

Mean Average Precision (mAP) 
In the nuScenes dataset, the mean average precision (mAP) is calculated by the center distance on 

the ground plane [17]. This approach is used instead of the 3D Intersection over Union (IoU) to align 

the predicted results with the ground truth. 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/88/20241617 

52 



 

 

nuScenes Detection Score (NDS) 

nuScenes defines a scoring metric known as the nuScenes Detection Score (NDS). NDS is a weighted 

sum computing the following TP metrics: mAP, mATE, mASE, mAOE, mAVE and mAAE [17]. 

Among them, TP represents 5 types of true positive indicators (TP indicators). 

True Positive Metrics (TP Metrics) 

ATE (Average Translation Error): The average translation error, used to measure the translation error 

of target detection. 
ASE (Average Scale Error): The average scale error, used to measure the scale error of target 

detection. 

AOE (Average Orientation Error): The average orientation error, used to measure the orientation 

error of target detection. 
AVE (Average Velocity Error): The average velocity error, used to measure the velocity error of 

target detection. 

AAE (Average Attribute Error): The average attribute error, used to measure the attribute error of 
target detection. 

4.3.  Implementation Details 

We implemented two backbone networks, one being ResNet101-DCN initialized from the pre-trained 
FCOS3D model, and the other is VoVnet-99, which started from the DD3D pre-trained model. In our 

experiments, we used the feature outputs from the Feature Pyramid Network (FPN) at three different 

scales by default, which are 1/16, 1/32, and 1/64, with 256 feature channels at each scale. 

For the experiments on the nuScenes dataset, we set the default size of the Bird's Eye View (BEV) 
query to 200*200 pixels, with a perception range from -51.2 meters to 51.2 meters along both the X and 

Y axes. The resolution of the BEV grid is 0.512 meters per grid point. We also employed learnable 

positional encoding to enhance the BEV query. The BEV encoder consists of six layers, with the input 
BEV feature data for each layer remaining unchanged during the process, without the need for gradient 

computation. 

In the spatial cross-attention module, each local query corresponds to four target points in 3D space 

via the deformable attention mechanism, with target points at different heights and height anchors 
uniformly distributed between -5 meters and 3 meters. For each reference point in the 2D view features, 

we used four sampling points. The model was trained for 24 epochs with a learning rate of 2×10^-4. 

For the experiments on the Waymo dataset, adjustments were made due to the limitations of the 
Waymo camera system, which cannot capture the full scene around the ego vehicle. We set the default 

spatial size of the BEV query to 300*220 pixels. The perception range is from -35.0 meters to 75.0 

meters along the X-axis and from -75.0 meters to 75.0 meters along the Y-axis, with a resolution of 0.5 
meters per grid. The position of the ego vehicle in the BEV diagram is at (70, 150). 

4.4.  Experimental Results and Analysis 

In the nuScenes test set, we have presented the key outcomes of our method. Utilizing fair training 

practices and comparable model sizes, our approach has achieved an NDS score of 57.7% on the test 
set. This performance not only surpasses the previous record of 56.9% set by the BEVformer method 

but also outperforms the DD3D approach by a significant margin of ten percentage points, 

demonstrating that our method offers superior fitting capabilities. 

Table 1. 3D detection results on the nuScenes test set.  

Method Modality Backbone NDS mAP mATEL mASEl mAOEI mAVEI mAAEJ 

PointPainting 
[21] 

LiDAR 
& 

Camera 
- 58.1% 46.4% 38.8% 27.1% 49.6% 24.7% 11.1% 

FCOS3D [22] Camera R101 42.8% 35.8% 69.0% 24.9% 45.2% 143.4% 12.4% 

PGD [23] Camera R101 44.8% 38.6% 62.6% 24.5% 45.1% 150.9% 12.7% 
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BEVFormer [24] Camera R101 53.5% 44.5% 63.1% 25.7% 40.5% 43.5% 14.3% 

DD3D [25] Camera V2-99* 47.7% 41.8% 57.2% 24.9% 36.8% 101.4% 12.4% 

BEVFormer [24] Camera V2-99* 56.9% 48.1% 58.2% 25.6% 37.5% 37.8% 12.6% 

Ours Camera V2-99* 57.7% 49.9% 60.3% 28.0% 40.4% 40.7% 13.4% 

V2-99* was pre-trained on the depth estimation task with additional data [20]. 

5.  Conclusion 
Our work proposes a 3D object detection algorithm specifically for bird's-eye view (BEV) scenarios, 

enhancing detection capabilities by integrating spatial and temporal features, as shown in Table 1. The 

core of our method is the spatial-temporal alignment module, which, based on the BEVFormer, 
combines and synchronizes the analysis of temporal information and spatial features from the traditional 

BEVFormer method. This module can more efficiently process information from different time steps 

and spatial positions, enhancing the accuracy and robustness of object detection. 

By utilizing the temporal self-attention mechanism, we capture the information of objects changing 
over time, enabling the model to associate features from different time steps, thereby identifying and 

tracking moving objects. By employing the spatial cross-attention mechanism, we capture spatial 

features within the region of interest, facilitating the interaction between features extracted from the 
camera perspective and BEV queries. At the same time, using the spatial-temporal alignment module to 

analyze spatiotemporal information synchronously leads to more efficient processing results, while 

achieving better effects in improving accuracy and reducing error accumulation. Further optimization 
of the BEVFormer model's performance can be attempted, especially considering the cost of hardware 

devices in practical applications, to balance between accuracy, speed, and memory efficiency. It is 

possible to explore how to apply this model to a wider range of scenarios and tasks, such as pedestrian 

detection, traffic sign recognition, etc. 
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