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Abstract. Ambient air quality monitoring requires low-cost environmental sensor devices that 

are affordable and feasible for large-scale implementation. However, issues such as sensor drift, 

environmental sensitivity, and inter-sensor variability affect data accuracy and cannot be 

adequately addressed by traditional calibration methods. This paper summarizes the use of 

machine learning techniques for calibrating low-cost sensors. The literature review shows that 

machine learning models like Random Forest, Support Vector Regression, and Neural Networks 

significantly improve sensor accuracy and reliability. For instance, Random Forest models 

reduced the root mean squared error by 30% for PM2.5 measurements, while Neural Networks 

achieved an R² value of 0.997 for methane sensors. Integrating machine learning with IoT and 

mobile technologies enhances real-time monitoring and spatial resolution. Identified gaps 

include the quality of training datasets, managing environmental variability, and improving 

model transferability across different contexts. Addressing these gaps through advanced models 
and real-time calibration methodologies will further enhance sensor performance, ensuring more 

precise and reliable environmental data. 
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1.  Introduction 

Affordable, easy deployment of low-cost sensors has led to revolutionary large-coverage continuous air 

quality monitoring. However, these sensors suffer from large-scale limitations, such as sensor drift, 
environmental sensitivity, and inter-sensor variability, which compromise accuracy in data; calibration 

should hence be performed for reliable data collection of these sensors. 

While useful, the traditional calibration methods do not sufficiently address the many and varied 
challenges that low-cost sensor imaging systems present. Current methods have difficulty taking into 

account the dynamic and complex nature of factors influencing sensor performance, such as different 

environmental conditions or slowly drifting outputs due to aging. 
Machine learning over the last several years has proven to be a strong instrument for placing such 

low-cost sensors into proper calibration. As a result, machine learning will find biases or inaccuracies 

that can be corrected in large datasets and complex patterns traditional methods miss. Previous research 

has evaluated the improvements in sensor performance that machine learning models can provide; For 
example, Kumar and Sahu obtained substantial decreases in root mean squared error (RMSE), as well 
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as increased values of R² for PM2.5 Random Forest models with measurements [1]. Similarly, Mitchell 

et al obtained an R² of 0.997 for sensors, modeled as methane with neural network calibration [2]. 

This review covers literature related to calibrating low-cost sensor systems using machine learning. 
The paper aims to introduce current low-cost sensor technology, present challenges in calibration of 

them, and give an overview of different machine-learning techniques. Analysed performance 

improvements reported by literature are also discussed. The goal is to provide a comprehensive 
understanding of how machine learning can enhance the reliability of low-cost environmental 

monitoring systems and identify gaps for future research. 

2.  Literature review 

2.1.  Overview of low-cost sensor systems 
Low-cost sensors with user-friendliness and affordability make them useful for the increased popularity 

of low-cost sensors in air quality monitoring, thus possibly enabling large-scale, continuous monitoring 

projects. The sensors include electrochemical, metal oxide semiconductor (MOS) sensors, and optical 
particle counters for the measurement of NO2, CO, O3, PM2.5, and PM10. Electrochemical sensors are 

sensitive and specific for gases such as NO2, CO, and O3. The MOS sensors are sensitive to gases, which 

are detected by the change in electrical resistance. They are mainly used in the detection of CO and 
VOC, but there is high environmental sensitivity calling for frequent calibration. Optical particle 

counters determine the concentrations of particulate matter by detecting light-scattered particles, hence 

enabling fast and real-time measurements [2,3]. 

Nonetheless, low-cost sensors have problems associated with sensor drift, environmental sensitivity, 
and inter-sensor variability that debase their accuracy in data collection. Aging, wear, and environmental 

conditions are some of the factors that create deviations from initial calibrations of low-cost sensors; 

thus, they require regular recalibrations to maintain their accuracy [2,4]. Traditional calibration methods 
remain, however, insufficient for all these problems holistically, which has thus raised a growing interest 

in advanced techniques like machine learning to enhance sensor performance and reliability [1,2]. 

Table 1 summarizes the low-cost sensor system project in this literature review. 

Table 1. Summary of projects using machine learning for sensor calibration. 

Project Name Reference 
Pollutant 

Detected 
Sensor Used Models Tested 

Evaluation of Nine ML 
Algorithms for PM2.5 

Sensors 

Kumar & 
Sahu, 2021 

[1] 
PM2.5 

Custom PM2.5 

Sensor 

MLR, SVR, kNN, 

RT, RF, GB 

Field Calibration Method 

for Low-Cost Sensors 

Patra et al., 

2021 [5] 

PM2.5, 

NO2, O3 

Alphasense OPC-

N3, NO2-A43F 

OLS, Elastic Net, 

RF, GAM 

Calibration of a Low-Cost 

Methane Sensor 

Mitchell et 

al., 2024 [2] 
Methane 

Figaro NGM2611-

E13 

Various ML 

models 

Improving Data Reliability 

for Indoor PM Monitoring 

Chojer et 

al., 2022 [6] 
PM2.5 

Plantower 

PMS5003 

Linear 
Regression, kNN, 

SVR 

Humidity and Temperature 

Corrections for Low-Cost 

Sensors 

Vajs et al., 

2021 [7] 
PM2.5 

Alphasense OPC-

N2 

Linear 

Regression, RF, 

ANN 

Indoor Air Quality 

Monitoring and Source 

Apportionment 

Higgins et 

al., 2024 [8] 

PM2.5, 

CO2 

Senseair S8, 

Plantower 

PMS7003 

MLR, SVR, kNN, 

RF 
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Advancing Air Sensor 

Calibration in Stationary 

and Mobile Settings 

Wang et al., 

2022 [9] 

PM2.5, 

NO2 

Alphasense OPC-

N3, NO2-A43F 

Linear 

Regression, RF, 

LightGBM 

IoT LoRaWAN 

Connectivity and ML-

Based Calibration 

Ali et al., 

2020 [10] 

PM2.5, 

NO2, O3 

Custom IoT 

LoRaWAN Sensor 

MLR, SVR, kNN, 

RF 

Urban Air Quality 

Mapping with Mobile 

Sampling in Seoul 

Lim et al., 

2019 [11] 

PM2.5, 

NO2, O3 

Alphasense OPC-

N3, NO2-A43F 

Linear 

Regression, RF, 

LightGBM, SVR 

ML Techniques to 

Improve Field 

Performance of Low-Cost 

Sensors 

Bush et al., 

2022 [12] 

PM2.5, 
NO2, O3, 

CO2 

Plantower 

PMS7003, Senseair 

S8, Alphasense 

OPC-N3 

MLR, kNN, RF, 

SVR, ANN 

2.2.  Machine learning techniques 

Various machine learning algorithms that have been used to enhance calibration for low-cost sensors 

include supervised, unsupervised, and reinforcement learning. 
Supervised Learning: This involves training models on labelled datasets, in which the model learns 

how to map inputs into known outputs through the data. The common algorithm is linear regression, 

which predicts continuous output variables and is widely used since most sensor readings have linearity; 
support vector machines (SVR) performed better on calibration tasks because of the ability to balance 

between model complexity and accuracy; k-nearest neighbors (kNN), where the approach is simple for 

small datasets; random forest, where it constructs multiple decision trees and proves to be very robust 

for complex, non-linear relationships; and neural networks, where each node is interconnected with one 
another across layers and is said to learn complex patterns from large datasets [1]. 

Unsupervised Learning: Models are trained on data that does not contain responses labeled by 

humans; it aims to find structure among the data's natural groupings. The K-means Clustering partitions 
data into clusters nearest to the mean; it is effective when it comes to finding hidden patterns. Principal 

Component Analysis (PCA) reduces the dimensionality of the dataset while retaining the variance and 

outlining the principal variables affecting sensor readings [2]. 

Reinforcement Learning: This category considers the learning algorithm as an agent's decision 
according to the performance of the actions and the rewards observed. It finds applications in dynamic 

calibration scenarios, mainly because the environments keep changing. However, it is not frequently 

applied to sensor calibration, like supervised and unsupervised learning are. 

2.3.  Application of machine learning in calibration 

Machine learning has seen widespread application to improve calibration with low-cost sensors for a 

range of pollutants, showing significant gains both in accuracy and reliability. 
One study found that using Random Forest models for PM2.5 sensors, such as the Alphasense OPC-

N2, resulted in good accuracy improvement, with an R² value of 0.85 and a reduction in RMSE of 30% 

compared with traditional methods [1]. Support vector regression and neural networks have also been 

effective, with neural networks performing the best [1]. 
Some very promising work has been done for NO2 sensors using machine learning models—for 

example, Random Forests, Neural Networks, and SVR. Neural networks improved RMSE by about 30% 

and increased accuracy in measurements to 25% [1]. Models including environmental variables, such 
as Random Forests and Gradient Boosting, have improved calibration accuracy, among others [2]. 

Table 1. (continued). 
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For other pollutants studies, calibration of sensors for other pollutants such as methane has been 

made possible by machine learning methods; methane sensors, when calibrated using random forest and 

neural network methods in one study, delivered high accuracy at RMSE = 5.1 ppm and R² = 0.997 [2]. 
On the other hand, some studies have demonstrated that the calibration of multiple pollutant-sensing 

instruments including PM10, NO2, O3, CO, and SO2 could be greatly enhanced by the use of linear 

regression, random forest, and gradient boosting models among others [3,12,13]. 
Indoor air quality monitoring, based on low-cost sensor data, has greatly improved because of 

machine learning in improving reliability. Recent studies show that the employment of Alphasense 

OPC-N3 and NO2-A43F sensors in indoor environments proves to improve data accuracy considerably; 

hereby, random forest and SVR models are addressed [5]. 
This has been furthered to include sensor calibration within mobile sampling and IoT integration by 

machine learning. Machine learning models, such as the random forest model used within mobile 

sampling, enhanced urban maps of air quality in Seoul, South Korea, contributing to a significant 
increase in spatial resolution and precision [11]. Further, the machine learning-calibrated technique, 

combined with IoT connectivity, also demonstrated greater accuracy, and monitoring real-time capacity 

compared to techniques without these capabilities [1,2,3,5]. 

2.4.  General trends in machine learning applications 

Several different machine-learning algorithms have been recently applied to improve the calibration of 

low-cost sensors. The most widely used models include Random Forest, Support Vector Regression, 

Neural Networks, and Gradient Boosting. These models address the intrinsic limitations of low-cost 
sensors such as sensor drift, environmental sensitivity, and inter-sensor variability. The model 

significantly increased the accuracy, with the sensor of PM2.5 being between high R² and low RMSE in 

its calibration as compared to the traditional method. The use of Gradient Boosting and Neural Networks 
gave important improvements in the accuracy of NO2 and O3 sensors. The nearest to 0.998 R² for 

methane sensors showed high calibration accuracy. Random forest models more often showed the 

highest performance for most of the pollutants since they can handle non-linear relationships with good 

stability in the results. Particularly, for large datasets with complex patterns, Neural Networks can show 
a strong increase in calibration accuracy. SVR and Gradient Boosting models are also effective, often 

generating noticeable decreases in RMSE. Machine learning integrated with IoT, and mobile sampling 

technologies has enhanced monitoring capabilities and increased spatial resolution, both in a real-time 
situation, for an accurate approach with detailed environmental data collection. 

2.5.  Advantages and limitations 

Machine learning models largely improve the calibration accuracy of low-cost sensors, providing much-
needed reliable data. Random Forest and Neural Network models are good enough to capture the 

complex and non-linear relationships existing between the sensor readings and true pollutant 

concentrations. It is also scalable in regard to massive datasets and hence fits extensive sensor networks.  

Nevertheless, the machine learning models are greatly dependent on the quality and quantity of the 
data. For more sophisticated models like Neural Networks, excessive computational resources, and vast 

expertise are required, which limits their more general application. Apart from the limitations, data 

inconsistency may arise with changing environmental conditions that influence sensor readings and 
hence may require frequent recalibration.  

3.  Methodology 

This section describes the approach used to select and analyse literature on the application of machine 
learning in calibrating low-cost sensors. The focus was on studies discussing machine learning 

techniques and their application in calibrating low-cost environmental sensors. 
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3.1.  Search strategy and databases used 

A comprehensive literature search was conducted using databases including IEEE Xplore, PubMed, and 

Google Scholar. The search was limited to studies published between 2010 and 2023 to ensure the 
inclusion of the most recent advancements. Keywords used in the search included "machine learning 

calibration low-cost sensors," "low-cost air quality sensor machine learning," and "machine learning air 

quality monitoring." Additional filters applied included peer-reviewed articles and studies focusing on 
empirical data. 

3.2.  Inclusion and exclusion criteria 

Papers were included if they discussed machine learning techniques specifically applied to low-cost 

sensor calibration, provided empirical data with quantitative results demonstrating the effectiveness of 
the calibration methods, and were published in peer-reviewed journals or conferences. Studies were 

excluded if they lacked sufficient empirical data, defined as quantitative results supporting the 

effectiveness of the machine learning models, or if they were not directly relevant to the calibration of 
low-cost environmental sensors. 

3.3.  Analysis of selected papers 

The selected papers were analysed using a systematic approach. A data extraction form was used to 
collect key information, including study objectives, sensor types, pollutants monitored, machine 

learning models applied, and performance metrics such as R² and RMSE. The extracted data were then 

synthesized to identify common themes, methodological approaches, and performance outcomes. 

4.  Comparative analysis 

4.1.  Introduction to the comparative analysis section 

This section presents a comparison of different machine learning models that have previously been 

applied in the calibration of low-cost sensors, using as performance indicators R² and RMSE.  
These are common metrics that allow practitioners to qualitatively evaluate how effective a model 

is: 

R² describes how much variance is explained by the model; a value near one is a better fit. RMSE 

describes the average magnitude of errors, with small values denoting good performance. 
Some recent studies have shown appreciable improvements in sensor calibration using these metrics. 

For example, Kumar & Sahu reported improvements in PM2.5 calibration, while Mitchell et al showed 

high accuracy in methane sensor calibration with R² = 0.997 and substantial RMSE reduction [1,2]. Such 
metrics convey consistent and insightful measures of model performance in improving the accuracy of 

sensor data. 

4.2.  Comparative performance of machine learning models 
Table 2 shows the summary of sensor calibration performance metrics in terms of R² and RMSE 

from different studies. 

Table 2. Performance metrics of machine learning models in sensor calibration. 

Project Name Reference Pollutant(s) Sensor 

Models (bolded 
and underlined 

have the best 

performance) 

R2  RMSE 

Evaluation of 
Nine ML 

Algorithms for 

PM2.5 Sensors 

Kumar & 

Sahu, 
2021 [1] 

PM2.5 

Custom 

PM2.5 
Sensor 

MLR, SVR, kNN, 

RT, RF, GB 

0.75 

to 
0.97 

72.24 

to 
0.31 
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Field Calibration 

Method for Low-
Cost Sensors 

Patra et 

al., 2021 
[5] 

PM2.5, NO2, 

O3 

Alphasense 

OPC-N3, 
NO2-A43F 

OLS, Elastic Net, 

RF, GAM 

0.65 

to 
0.91 

50.1 

to 
1.32 

Calibration of a 

Low-Cost 

Methane Sensor 

Mitchell 

et al., 

2024 [2] 

Methane 

Figaro 

NGM2611-

E13 

Various ML 
models 

0.78 

to 

0.99 

10.5 
to 5.1 

Improving Data 

Reliability for 

Indoor PM 
Monitoring 

Chojer et 
al., 2022 

[6] 

PM2.5 
Plantower 

PMS5003 

Linear Regression, 

kNN, SVR 

0.60 
to 

0.89 

25.8 

to 8.2 

Humidity and 

Temperature 
Corrections for 

Low-Cost 

Sensors 

Vajs et al., 

2021 [7] 
PM2.5 

Alphasense 

OPC-N2 

Linear Regression, 

RF, ANN 

0.50 
to 

0.82 

30.5 
to 

12.1 

Indoor Air 
Quality 

Monitoring and 

Source 
Apportionment 

Higgins et 

al., 2024 

[8] 

PM2.5, CO2 

Senseair S8, 

Plantower 

PMS7003 

MLR, SVR, kNN, 
RF 

0.62 

to 

0.88 

22.4 

to 

10.5 

Advancing Air 

Sensor 

Calibration in 
Stationary and 

Mobile Settings 

Wang et 

al., 2022 
[9] 

PM2.5, NO2 

Alphasense 

OPC-N3, 
NO2-A43F 

Linear Regression, 

RF, LightGBM 

0.60 

to 
0.90 

15.0 

to 7.5 

IoT LoRaWAN 
Connectivity and 

ML-Based 

Calibration 

Ali et al., 

2020 [10] 

PM2.5, NO2, 

O3 

Custom IoT 

LoRaWAN 
Sensor 

MLR, SVR, kNN, 

RF 

0.70 

to 
0.92 

18.4 

to 8.7 

Urban Air 

Quality Mapping 

with Mobile 

Sampling in 
Seoul 

Lim et al., 
2019 [11] 

PM2.5, NO2, 
O3 

Alphasense 

OPC-N3, 

NO2-A43F 

Linear Regression, 

RF, LightGBM, 

SVR 

0.67 

to 

0.89 

20.5 
to 9.8 

ML Techniques 

to Improve Field 
Performance of 

Low-Cost 

Sensors 

Bush et 
al., 2022 

[12] 

PM2.5, NO2, 

O3, CO2 

Plantower 

PMS7003, 
Senseair S8, 

Alphasense 

OPC-N3 

MLR, kNN, RF, 

SVR, ANN 

0.65 
to 

0.94 

25.0 
to 

11.2 

4.3.  Detailed Analysis by Pollutant 
ML models have shown significant effectiveness in improving PM2.5 sensor calibration. In some studies, 

strong performance was particularly seen in kNN, Random Forest, and SVR models, where 

improvements had reached 0.97 for R² and 0.31 for RMSE [1,6,7]. These models can handle nonlinearity 
effectively; hence, robust results can be achieved. 

For NO2 sensor calibration, Random Forest, Gradient Boosting, and Neural Networks have shown 

substantial improvements. These models registered an R² improvement to 0.92 and an RMSE reduction 
from 50.1 to 1.32 [9,10,11]. They capture the environmental variances effectively, thus increasing the 

accuracy of the measurements. 

Table 2. (continued). 
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Other pollutants, including methane (CH4), PM10, O3, and CO2, also showed very good results 

through the machine learning models. For methane, the interaction model estimated RMSE between 4.5 

to 5.1 ppm with R² between 0.997 and 0.998, which is a very high accuracy for methane measurements 
[2]. Like PM2.5, PM10 calibration with Random Forest and Gradient Boosting models demonstrated high 

effectiveness, Calibration studies for O3 and CO2 using Random Forest and SVR methods showed R² 

improvements up to 0.94 and RMSE reductions up to 11.2 [8,12,13]. 

4.4.  Improvements in Sensor Data Accuracy 

The large decrease in RMSE and increase in R² is noticed with ML model calibration for all four 

pollutants. For instance, PM2.5 calibration improved up to 0.97 in R² with an RMSE reduction to 0.31, 

NO2 calibration up to 0.92 in R² with RMSE down to 1.32, and methane calibration up to 0.998 in R² 
with RMSE as low as 5.1 ppm. 

4.5.  Integration of Machine Learning with IoT and Mobile Sampling 

Sampling Combining machine learning with IoT and mobile sampling technology improves sensor 
calibration accuracy to enhance real-time data collection and analysis. For instance, in South Korea, the 

spatial resolution and accuracy of an IoT system of air pollution monitoring systems were boosted by 

the employment of Random Forest models [10]. In Seoul, the use of mobile sensors integrated with the 
power of Random Forest and LightGBM models allowed a massive increase in the possibility of 

mapping urban air quality down to microscale levels [11]. These integrations provide fine-grained and 

real-time information about the environment at an increased level of detail, thus increasing the overall 

effectiveness of the sensor network. 

5.  Discussion 

5.1.  Key findings 

The most important findings that emerge from the literature review and comparative analysis pertain to 
the fact that the calibration of low-cost sensors with machine-learning techniques yielded far better 

performance in terms of the significant improvement in average R² values, and reduction of RMSE for 

pollutants, particularly PM2.5, NO2, CH4, O3, and CO2. These models added flexibility and ensured 

robustness when examining complex relationships between sensor readings and real pollutant 
concentrations in consideration of environmental variability and sensor drift. The joint combination of 

machine learning with IoT and mobile technologies improved the accuracy, real-time monitoring, and 

spatial resolution of information obtained from these low-cost sensors. For instance, they produced 
significant improvements in PM2.5 calibration for both the Random Forest and SVR models, whereas 

very good accuracy concerning the methane calibration was obtained by the complex interaction models. 

5.2.  Gaps in the literature 
Yet there exist several lacunas: the best model's performance depends largely on the quality and quantity 

of the training data used. A majority of these studies indicate that for higher accuracies and 

generalizations, large-scale, high-quality datasets are necessary. Though certain environmental 

parameters have been considered in the present models, a better approach is required to handle the 
environmental variability adequately. Very high computation resources and expertise are mandatory for 

dealing with advanced-level machine learning models, particularly Neural Networks. Simplification of 

such models without loss of accuracy should be helpful in their broader application. In addition, many 
machine-learning models are developed for site- or condition-specific applications and do not generalize 

well with other settings, urging the need for research to improve model transferability over 

environmental contexts. 
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5.3.  Potential for future research 

Future research would focus on the following lines: to improve the quality of diverse datasets by 

collecting more exhaustive data, dealing with sparsity, and ensuring consistency in quality across 
sensors and locations; use more advanced machine learning models, such as deep learning and ensemble 

methods, which hold better performance. 

In such a case, real-time calibration methods should be developed for the continuous monitoring of 
sensors to ensure that consistent data accuracy exists, while IT and cloud-based technologies enable this 

purpose. Fourth is the enhancement of model transferability to different environmental scenarios and 

geographic locations. This relates to the specific identification of certain environmental and geographic 

variables that future models should consider enhancing their applicability across contexts. 

6.  Conclusion 

6.1.  Summary of key points 

The literature is focused on the importance of machine learning techniques for the calibration of low-
cost sensors measuring environmental parameters. In the majority of reviewed studies, such important 

improvements in both sensor accuracy and reliability are shown results in their being very cost-effective 

for large-scale environmental data collection. Machine learning models, such as Random Forest, SVR, 
and Neural Networks, have consistently proven to outperform traditional calibration techniques. These 

models attained remarkable improvement in R² with a significant decrease of RMSE in the estimation 

of pollutants including PM2.5, NO2, CH4, O3, and CO2. The machine learning models Random Forest 

and Neural Networks appropriately accommodated sensor readings and their complicated and nonlinear 
associations with actual pollutant concentrations, controlling the drift of sensors and the environmental 

variability. 

The combination of machine learning with IoT and mobile technologies enables the monitoring to 
be real-time and at higher spatial resolution, with improved data accuracy. Accordingly, various 

calibration approaches have been found to be optimal for the calibration of individual pollutants; for 

example, good PM2.5 calibration was achieved with both Random Forest and SVR models, whereas high 

methane sensor accuracy was obtained with complex interaction models. 

6.2.  Implications for practice 

The findings have a few implications in practice. Machine learning is accurate in calibration, and, for 

that matter, the natural environment will likely become increasingly represented with a high level of 
reliance in terms of accuracy related to policy decisions and public health programs. The use of machine 

learning allows continuous low-cost monitoring for real-life solutions at large scales. Such calibrations 

and algorithms integrated into the IoT scheme provide a path for real-time processing and calibration at 
any point where timely and relevant environmental assessment is required. 

6.3.  Potential for future research 

Several important aspects deserve more attention in future research. Quality and diversity of the training 

data are very important, as they can impact the richness of collected data, sparsity in data, and quality 
data consistency in all the sensors and locations. Moreover, it would further push the calibration 

performance through advanced machine learning models—especially in deep learning and ensemble 

methods. Real-time calibration methods will, therefore, be developed using IoT and cloud-based 
technologies to allow on-the-fly monitoring and updating of the sensor data. The models of machine 

learning in transferability across environmental conditions and locations will, thus, guarantee robust 

performance under different contexts. 
Conclusively, machine learning thoroughly improved the calibration of the low-cost sensors and 

hence provides more accurate and reliable environmental monitoring. This would signify a further step 

toward using innovative solutions for better collection and analysis of data to solve global environmental 

challenges. 
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