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Abstract. This work presents a novel method for leveraging resting-state functional magnetic 

resonance imaging (fMRI) data to accurately detect Attention Deficit Hyperactivity Disorder 

(ADHD). The proposed method integrates the Convolutional Block Attention Module (CBAM) 

with a lightweight Autoencoder network to effectively extract and highlight salient features 
within fMRI scans. By leveraging attention mechanisms, the model focuses on important local 

details while filtering out irrelevant information, thereby enhancing diagnostic precision. 

Extensive experimentation on the ADHD-200 dataset showcases the efficacy of the proposed 

approach, demonstrating its ability to improve classification performance significantly. 

Specifically, the method achieved an average accuracy of 91.7% across the NYU, 93.8% across 

the KKI, 86.4% across the NI, 89.1% across the PU, and 83.5% across the PU_1 datasets. This 

research underscores the potential of attention-based deep learning techniques in advancing 

ADHD diagnosis using neuroimaging data. 
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1.  Introduction 
Inattention, hyperactivity, and impulsive behavior are hallmarks of attention deficit hyperactivity 

disorder (ADHD), a neurodevelopmental disorder that causes significant disruption to daily functioning 

[1]. The likelihood of ADHD persisting into adulthood generally falls within the range of 4% to 5% [2], 

with affected individuals more likely to experience the onset of mental health conditions such major 
depressive disorder, bipolar disorder, and drug addiction [3]. Therefore, the precise and timely diagnosis 

of ADHD holds paramount importance for effective intervention and management. However, traditional 

ADHD diagnosis methods face challenges stemming from variability in subjective assessments, 
inaccuracies or incompleteness in evaluation questionnaires, and cultural factors not adequately 

considered in standardized ADHD tests [4]. Given these limitations, novel approaches utilizing 

neuroimaging techniques and artificial intelligence (AI) have emerged as promising avenues for 

improving ADHD diagnosis [5].  
In 2011, the ADHD-200 Consortium held an international competition and made available a dataset 

of eight different independent neuroimaging scanning sites' resting state fMRI [6]. Functional magnetic 

resonance imaging (fMRI) can be utilized in ADHD categorization by recording the functional activity 
of the brain, which may vary between persons with ADHD and those without [7]. Thus, using machine 
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learning (ML) and deep learning (DL) algorithms to neuroimaging data allows for the identification of 

complex patterns and characteristics associated with ADHD disease. 

Early approaches to ADHD classification predominantly relied on machine learning techniques. 

Originally, these tactics centered on selecting neurobiologically significant components from input data 
and inputting them into sequential classifiers [8]. Their ADHD classification approaches include 

Attributed Graph Distance Measure [9], Support Vector Machine with Recursive Feature Elimination 

(SVM-RFE) [10], and Clustering [11]. To enhance classification accuracy, numerous machine learning 
studies have concentrated on acquiring more reliable information about ADHD by extracting latent 

features. For example, Fusion fMRI [12] combines Elastic Net-based feature choice with clustering 

methods to extract discriminative features from both non-imaging and dense functional brain networks. 

Subsequently, a Support Vector Machine classifier is trained to classify ADHD against control subjects. 
L1BioSVM [13] presents a bi-objective approach to ADHD classification, utilizing the L1-norm support 

vector machine (SVM) to consider both the margin of separation and empirical error simultaneously. 

This method applies the normal boundary intersection (NBI) technique to generate a representative 
nondominated set. The R-Relief method [14] employs Principal Component Analysis (PCA) to calculate 

sequential entropy for the score-form fractional Amplitude of Low-Frequency Fluctuation (fALFF), 

successfully reducing noise interference within the input data and generating resilient components for 
the classifier. 

This shift towards DL approaches in recent years marks a departure from earlier ML methods, 

employing a range of neural network architectures to acquire customizable high-level features and steer 

the classification process. Convolutional neural networks (CNNs) have emerged as a prominent option 
in this domain. For examining the local spatial patterns of MRI characteristics, both 3-D CNN [15] and 

4-D CNN [16] architectures have been introduced. DeepFMRI[17] is an end-to-end learning system 

designed for fMRI data processing. It consists of three networks: a feature extractor, a functional 
connection network, and a classification network. The goal is to automate the designation of participants 

as ADHD or healthy controls. Transformer models, known for their remarkable performance in various 

tasks, have also been applied to ADHD classification. Transformer with a Diffusion Kernel Attention 

Network is proposed that utilizes for integrated modeling of functional brain networks [18]. 
Autoencoder (AE) networks excel at learning discriminative, high-level features. The STAAE 

framework [19] decomposes rfMRI into spatial and temporal patterns using autoencoder (AE) networks, 

and introduces a resting state temporal template (RSTT)-based classification technique that has been 
validated for ADHD. 

These innovative approaches signify progress in utilizing advanced techniques in neuroimaging and 

AI to enhance the precision of ADHD diagnosis. By leveraging these technologies, there is potential to 
improve intervention and management strategies for individuals with ADHD, ultimately leading to 

better outcomes. However, these methodologies face challenges. They lack consideration regarding 

whether the extracted features truly represent the primary characteristics of the input images. 

To address these challenges, this study proposes a novel framework integrating the Convolutional 
Block Attention Module (CBAM) [20] with an autoencoder network for precise ADHD classification 

using fMRI data. The proposed method enhances diagnostic accuracy by leveraging CBAM to focus on 

salient features within fMRI scans and employing image reconstruction techniques to enhance feature 
representations. This framework simplifies model complexity by eliminating the decoder after model 

training and retaining only the encoder and classifier layers for prediction. This adjustment enhances its 

compatibility for deployment on mobile devices and streamlines the retraining process. 
In this research, the architecture of the proposed CBAM-autoencoder network is presented, 

elucidating its constituent elements and operational principle, and then the design and implementation 

of the proposed CBAM-autoencoder network are presented, along with an evaluation of its performance 

on the ADHD-200 dataset. The experiments conducted reveal consistent enhancements in classification 
accuracy compared to existing methodologies, underscoring the effectiveness of attention-based feature 

extraction in ADHD diagnosis. 

This paper has the following three academic contributions: 



Proceedings	of	the	6th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/88/20241589

14

 

 

- A novel autoencoder neural network integrating attention mechanisms architecture is proposed, 

improving classification accuracy on the ADHD-200 dataset. 

- Post-model training, the decoder is discarded, leaving only the encoder and classification layers for 

prediction, thereby optimizing model efficiency. 
- Employing CBAM enhances the network's capability to concentrate on crucial features while 

disregarding irrelevant ones. 

2.  Proposed Methodology 

2.1.  Overall Architecture 

The proposed method for accurate classification of Attention Deficit Hyperactivity Disorder (ADHD) 

using resting-state functional Magnetic Resonance Imaging (fMRI) data features a CBAM-autoencoder 

network (refer to Figure 1). This network harnesses the power of autoencoders to compress input data 
into a latent-space representation, which is then reconstructed to produce the output. The Convolutional 

Block Attention Module (CBAM) is a powerful mechanism used in neural networks, particularly in 

architectures like autoencoders, to selectively focus on important features while suppressing irrelevant 
ones in input images [20]. 

Figure 1. Overall architecture of CBAM-autoencoder network 

2.2.  Autoencoder Network 
The autoencoder network is made up of two components: an encoder and decoder. The encoder reduces 

the dimensionality of the input fMRI images (64×64×3) to generate a latent-space representation 

(8×8×32), while the decoder reconstructs the original input from this representation (256×256×3). It 
includes convolutional layers, a CBAM module, and a pooling layer. The latent-space representation is 

further processed by convolutional layers before reaching the classification layer. The involved layers 

are described in the following: 

Convolutional Layer, at the heart of the autoencoder network lies the convolutional layer, which 
extracts features from the input images. By convolving the input data with learnable filters, this layer 

captures hierarchical features crucial for classification. The size of the receptive field influences the 

breadth of information captured, as larger fields tend to encompass more global and semantic-level 
details. 
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Batch Normalization Layers, to accelerate network training and improve stability, batch 

normalization layers are introduced. They normalize the input of each layer by adjusting mean and 

variance, enabling higher learning rates and reducing training time. Additionally, they provide 

regularization and improve network accuracy by alleviating the need for careful parameter initialization. 
The Convolutional Block Attention Module (CBAM) is described in depth in Section 2.3. 

Max-Pooling Layer, inserted between convolutional layers, the max-pooling layer reduces feature 

map dimensionality, compressing features and simplifying network complexity. It improves robustness 
and reduces overfitting by eliminating non-maximum values and achieving translation invariance. 

UpSampling Layer, in the decoder, the upsampling layer restores the latent-space representation to 

the original image size using interpolation. Alongside convolutional layers, it converts the low-

dimensional representation back to the original image format, facilitating accurate reconstruction. 

2.3.  Convolutional Block Attention Module 

The CBAM module (see Figure 2) consists of both channel-wise and spatial-wise attention processes, 

each serving a specific purpose in enhancing the network's ability to capture meaningful information 
[20]. The channel attention module evaluates the significance of features across different channels, while 

the spatial attention module identifies crucial regions within feature maps. Integrating the CBAM 

module following the convolutional layer enables the autoencoder network to acquire and emphasize 
important features present in input images.  

 
Figure 2. The CBAM module 

 

Figure 3. The channel attention module 

 

Figure 4. The spatial attention module 

When an intermediate feature map F ∈ ℝ
C×H×W

 is fed into the Convolutional Block Attention 

Module (CBAM), it undergoes a sequential process resulting in two crucial outputs: a 1D channel 

attention map Mc ∈ ℝ
C×1×1

 and a 2D spatial attention map Ms ∈ ℝ
1×H×W

. This attention mechanism 

can be summarized as follows: 

 F0 = Mc(F)⨀F (1) 

 F00 = Ms(F0)⨀F0 (2) 

where ⨀ denotes element-wise multiplication. 
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The Channel Attention Module (see Figure 3) is adept at discerning the relationships between 

channels to generate a detailed channel attention map. This process involves compressing the spatial 

dimension of the input feature map, followed by aggregating spatial information through both average-

pooling and max-pooling operations. By doing so, the module effectively gathers essential cues 
regarding distinctive object features. 

 Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F))) (3) 

where σ denotes the sigmoid function, and MLP represents a multi-layer perceptron with one hidden 
layer. 

Contrarily, the Spatial Attention Module (see Figure 4) directs its focus towards the spatial intricacies 

within features. It excels in identifying informative spatial regions. The module first performs average-

pooling and max-pooling procedures down a channel line to compute spatial attention, which highlights 
important locations. The outputs of these operations are then concatenated to form a concise feature 

descriptor. The spatial attention map is obtained by passing this explanation through an average layer of 

convolution for additional processing. This map offers guidance on where to accentuate or diminish 
features, thereby enhancing the feature representation. 

Expanding on the process, the channel information within the feature map undergoes aggregation 

through both average-pooling and max-pooling operations. This aggregation produces two distinct 2D 

maps: Fs
avg ∈ ℝ

1×H×W
 and Fs

max ∈ ℝ
1×H×W

, representing the average-pooled and max-pooled 
features across the channel axis, respectively. These maps capture essential insights into the feature 

distribution. 

Following this, the two maps are concatenated to form a unified representation, incorporating both 
the average and maximum pooled features. Subsequently, this concatenated representation is subjected 

to a 7x7 convolutional operation denoted as 

 Ms(F) = σ(f7x7([AvgPool(F);MaxPool(F)])) = σ(f7x7([Fs
avg; Fs

max])) (4) 

where σ represents the sigmoid function and f7x7 denotes a convolution operation with a 7x7 filter size. 

3.  Experiment 

3.1.  Dataset 

The fMRI data utilized in this investigation is sourced from the ADHD-200 repository, renowned for 
providing an extensive dataset catering to both competitive and research endeavors. This dataset 

encompasses a total of 776 fMRI scans paired with T1-weighted structural scans. Among these, 491 

scans stem from typically developing individuals, while 285 scans originate from patients diagnosed 

with ADHD, spanning an age range of 7 to 21 years. 
For the purpose of our study, we selectively include datasets sourced from distinct sites, namely the 

New York University medical center (NYU), Kennedy Krieger Institute (KKI), and Peking University 

(PU) sites. Each site's dataset harbors unique characteristics, which are succinctly outlined in Table 1. 

Table 1. Details of ADHD-200 dataset 

Site Age Female Male 
Healthy 

Control 
ADHD Total 

NYU 7–18 77 145 99 123 222 

KKI 8–13 37 46 61 22 83 

NI 11–22 17 31 23 25 48 

PU 8–17 52 142 116 78 194 

PU_1 8–17 36 49 62 24 86 
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To streamline data sharing and preprocessing procedures, initiatives such as the R-fMRI maps project 

were instrumental. The datasets, including both the hold-out testing dataset and a subset of the original 

training dataset, underwent rigorous preprocessing utilizing the Data Processing Assistant for Resting-

State fMRI (DPARSF) programs. 
The preprocessing pipeline encompassed several vital steps to ensure data quality and consistency. 

These procedures encompassed bandpass filtering to isolate pertinent frequency components, slice 

measuring modification, head movement correction, regression of nuisance covariates, spatial 
coregistration, bandpass filtering to isolate relevant frequency components, normalization to a 

standardized space for comparability, and finally, smoothing with a Gaussian kernel to enhance spatial 

coherence. 

3.2.  Result analysis and discussion 
The experiments utilized Intel Xeon Platinum 8171M CPUs and Nvidia GeForce RTX 3090 GPUs, with 

the model implemented under the Keras framework. 

Comprehensive comparisons were conducted with existing methods to evaluate the effectiveness of 
the proposed approach. Benchmarks included various machine learning techniques previously utilized 

in fMRI-based diagnosis, such as Fusion fMRI [12], L1BioSVM [13], and R-Relief [14]. Additionally, 

the performance of deep learning models including 3D CNN [15], Deep fMRI [17], KD-Transformer 
[18], and STAAE [19] were evaluated. 

Results from the comparison indicated that the proposed model outperformed both traditional 

machine learning and state-of-the-art deep learning methods (see Table 2). 

Table 2. Comparison with existing methods 

 NYU KKI NI PU PU_1 

Machine learning      

Fusion fMRI (2018) 52.7 86.7 – – 85.8 

L1BioSVM (2018) – 81.3 – 81.1 86.7 

R-Relief (2019) 70.7 81.8 – 68.6 – 

Deep learning      

3D CNN (2019) 70.5 63.0  – 72.8 – 

Deep fMRI (2020) 73.1 – 67.9 – 62.7 

KD-Transformer (2022) 82.9 90.9 72.0  70.6 – 

STAAE (2022) 82.2 76.6 63.7  79.5 – 

proposed method      

CBAM-Autoencoder 91.7 93.8 86.4  89.1 83.5 

4.  Conclusion 

In summary, this study introduces an innovative method for accurately detecting Attention Deficit 

Hyperactivity Disorder (ADHD) using resting-state functional Magnetic Resonance Imaging (fMRI) 

data. The proposed approach combines the Convolutional Block Attention Module (CBAM) with a 
lightweight Autoencoder network to effectively extract and emphasize key features within fMRI scans. 

Through the integration of attention mechanisms, the model prioritizes crucial local details while 

minimizing irrelevant information, thus enhancing diagnostic accuracy. 
Extensive experimentation on the ADHD-200 dataset demonstrates the effectiveness of the proposed 

method, resulting in significant improvements in classification performance. Specifically, the approach 

achieved notable average accuracies of 91.7% across the NYU, 93.8% across the KKI, 86.4% across the 
NI, 89.1% across the PU, and 83.5% across the PU_1 datasets. 

The proposed CBAM-autoencoder network architecture offers several contributions. Firstly, it 

presents a novel approach that enhances classification accuracy on the ADHD-200 dataset. Secondly, 
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by removing the decoder post-training and retaining only the encoder and classification layers for 

prediction, the framework optimizes model efficiency. Lastly, the integration of CBAM enhances the 

network's ability to concentrate on pertinent features while disregarding irrelevant ones. 

Although the ADHD-200 dataset is the only one the study looks at, more research is needed to 
determine whether the suggested strategy can be executed in real-world healthcare environments and if 

it can be generalized to other datasets. This will help advance the field of ADHD diagnosis and treatment 

approaches. 
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