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Abstract. The You Only Look Once (YOLO) algorithm series, as the forefront of object 

detection technology, has evolved from YOLOv1 to YOLOv10, consistently enhancing 

detection speed and accuracy. Through literature review and data analysis.  This paper mainly 

discusses the development processes of the YOLO algorithm series, focuses on the changes and 
innovations in network structure, training strategies, and performance optimization. By 

introducing techniques, such as CSPNet, Anchor-free, data augmentation, and multi-scale 

training, the YOLO algorithm has progressively found a better balance between detection speed 

and accuracy, demonstrating excellent performance in processing real-time images and handling 

high-complexity scenarios. Furthermore, this paper also addresses some challenges faced by the 

YOLO algorithms and potential future research directions, such as the lower accuracy in 

detecting small targets and reduced robustness in complex scenarios. Through analysis, potential 

optimization directions for the future include further refining network structure and employing 

more efficient training methods to enhance algorithm efficiency. This paper intends to offer a 

thorough performance evaluation of the YOLO series algorithms, identify potential areas for 

future improvements to advance YOLO technology. 
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1.  Introduction 
Since the introduction of YOLOv1 [1] in 2015, the YOLO series algorithms have drawn considerable 

attention due to their novel approach of converting object detection into an end-to-end [2] regression 

problem. This concept starkly contrasts with two-stage detection methods [3], streamlining the detection 
process and markedly increasing detection speed, thereby making YOLO ideal for real-time detection 

applications like video surveillance and autonomous driving.  

As the continuous technological advancements, the YOLO series algorithms have undergone 

numerous iterations, evolving from YOLOv1 to YOLOv10, with each version incorporating 
enhancements and modifications in network architecture, training strategies, and performance 

optimization. These updates have not only improved the accuracy and speed of the algorithms but also 

expanded their applicability across various application requirements and hardware conditions. 
This review meticulously traces the development of YOLO from YOLOv1 to YOLOv10, 

systematically analyzing the critical enhancements in each version through data analysis and literature 

review. Additionally, it examines the principal challenges algorithms face and explores potential future 
research directions, aiming to offer readers a thorough technical reference and forecasts of future trends 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/71/20241642 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

39 



 

 

for the YOLO series algorithms. Through this comprehensive analysis, people can better grasp research 

trends, optimize current algorithms, and develop more efficient solutions moving forward. 

2.  Object detection 

Object detection [4], as a core technology in the field of computer vision, is tasked with identifying and 
locating objects from complex visual data. The identification of objects involves feature extraction and 

classification, while the location of objects provides the computer with positional information about the 

objects. The development of object detection can be divided into two stages: the traditional object 
detection stage (before 2014) and the deep learning-based [5] object detection stage (after 2014). 

Traditional object detection algorithms relied on manually designed feature extractors (such as Haar 

features [6], SIFT features [7], etc.) combined with sliding window-based classifiers to achieve object 

detection. However, early algorithms exhibited poor performance and robustness. Subsequently, deep 
neural networks were applied to object detection, resulting in improved performance. 

Deep learning-based object detection is typically categorized into two types: two-stage detection 

methods and one-stage detection methods. Two-stage algorithms mainly involve two steps: first, 
potential candidate regions are extracted from the image, and then these candidate regions are subjected 

to detailed classification and boundary box refinement to obtain the final detection results. 

Representative algorithms include R-CNN [8], Fast R-CNN [9], and Mask R-CNN [10]. In contrast, 
one-stage algorithms directly predict the categories and locations of objects in the image. This approach 

generally offers faster detection speed, although it may exhibit slightly lower accuracy compared to two-

stage algorithms. Representative algorithms include SSD [11], RetinaNet [12], and You Only Look 

Once (YOLO). 
The YOLO series of algorithms, as one of the faster one-stage object detection algorithms, differs 

from previous methods by treating object detection as a single regression problem, directly obtaining 

bounding box coordinates and class probabilities from image pixels. This significantly enhances its real-
time detection and processing capabilities, making YOLO particularly suitable for applications requiring 

rapid response and instant analysis, such as autonomous driving, video surveillance, and robotic vision. 

3.  Evolution from YOLOv1 to YOLOv10 

3.1.  YOLOv1 
YOLOv1 [13] drew inspiration from the GoogLeNet [14] architecture, utilizing 24 convolutional layers 

to extract image features, followed by 2 fully connected layers to predict bounding boxes and classes. 

Additionally, it employed 1×1 convolutions for dimensionality reduction combined with 3×3 
convolutions, replacing the Inception modules of GoogLeNet. This approach reduced computational 

load while enhancing the model's non-linear capabilities. 

YOLOv1 used the Darknet framework for all its training. Initially, it was pre-trained on the 
ImageNet1000 [15] dataset. Subsequently, four convolutional layers and two fully connected layers 

were added, and further training was conducted on the Pascal VOC 2007 [16] and 2012 datasets. 

Throughout the network's training process, all layers utilized the leaky ReLU [18] activation function 

except for the last layer, which used the ReLU [17] function. This not only addressed the zero-gradient 
problem for negative inputs but also enhanced the model's non-linear capabilities. 

The design of such a network significantly improved YOLOv1's performance in object detection. 

Compared to two-stage algorithms, YOLOv1 offered faster detection rates and higher real-time 
performance. However, its accuracy was still lower compared to advanced algorithms like R-CNN and 

Fast R-CNN. Additionally, YOLOv1 performed poorly in detecting small clustered objects and objects 

of uncommon sizes, with occasional instances of missed detections. 

3.2.  YOLOv2 

YOLOv2 [19] made several improvements over YOLOv1 to address issues such as inaccurate 

localization, low detection accuracy, and low recall rate. Compared to its predecessor, YOLOv2 used 
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the Darknet-19 network as its framework (similar to the VGG [20] network), consisting of 19 

convolutional layers and 5 max-pooling layers. YOLOv2 achieved higher detection accuracy and faster 

speed, capable of real-time prediction of over 9000 different object categories. 

Regarding training strategies, YOLOv2 first employed Batch Normalization across all YOLO layers 
to normalize the model and enhance its generalization capability. Additionally, while YOLOv1 required 

input data of size 224×224 during pre-training and resized inputs to 448×448 for detection, which caused 

performance loss, YOLOv2 solved this issue. The authors used a High Resolution Classifier method, 
where the input data size was already 448×448 during pre-training, thus avoiding accuracy loss due to 

size conversion. Furthermore, YOLOv2 introduced several improvements, such as the anchor box 

mechanism, K-means clustering for preset anchors, and direct prediction of bounding box center 

positions, making bounding box detection more efficient and enhancing model performance. YOLOv2 
also combined features from different resolutions through the passthrough layer and feature map 

concatenation, improving small object detection. Finally, multi-scale training was implemented to 

enhance the model's robustness and adaptability to images of different sizes. 
Although YOLOv2 showed an improvement in accuracy compared to YOLOv1, it still lagged behind 

two-stage algorithms in terms of precision, and detection of small objects remains an area for 

improvement. 

3.3.  YOLOv3 

YOLOv3 [21] introduced several minor improvements based on YOLOv2. In terms of network structure, 

the authors were inspired by the FPN [22] method and incorporated residual networks and upsampling 

modules into Darknet-19, allowing the network to extract deeper features and reducing gradient descent 
issues. Additionally, YOLOv3 replaced max-pooling layers with convolutional layers with a stride of 2, 

reducing information loss during the feature extraction process. 

For bounding box prediction, YOLOv3 utilized logistic regression to predict the confidence of each 
bounding box, optimizing the problem of accuracy degradation due to overlapping detection boxes 

during multi-object detection. In terms of label classification, it adopted a multi-label classification 

approach, using logistic classifiers for classification, which supports multiple categories for a single 

object. YOLOv3 also used multi-scale feature maps to predict objects of different sizes. 
Overall, YOLOv3 performed relatively well, with improvements in detection accuracy and speed 

compared to YOLOv2, and enhanced performance in detecting small objects. However, it struggled 

more with detecting medium- and large-sized objects. 

3.4.  YOLOv4 

YOLOv4 [23] introduced many changes based on YOLOv3, resulting in significant improvements in 

both accuracy and speed. In terms of network structure, YOLOv4 utilized CSPDarknet53 as the 
backbone, which effectively reduced computational complexity and improved the model's 

generalization capability. Additionally, SPP blocks [24] and PAN structures [25] were incorporated into 

the network, enabling it to handle different input sizes and enhancing feature extraction and fusion 

capabilities. 
Moreover, YOLOv4 employed two different approaches, 'bag of freebies' and 'bag of specials', to 

improve model performance. The former involves training phase techniques and strategies such as data 

augmentation, mixed precision training, label smoothing, and hard example mining, which enhance 
model performance without increasing inference time and computational complexity. The latter involves 

adding specific modules and operations, such as introducing SPP, PAN, CSP [26] structures, and the 

Mish activation function [27], which, although increasing inference time and computational complexity, 
significantly boost the model's detection capabilities and accuracy. 

Building upon the foundation of YOLOv3, YOLOv4 introduced numerous strategies to enhance 

model accuracy, enabling it to surpass most mainstream object detectors of its time in both accuracy and 

speed, making it suitable for real-time detection tasks. However, YOLOv4 still has certain shortcomings 
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in small object detection, computational resource requirements, training complexity, data requirements, 

and applicability to specific scenarios. 

3.5.  YOLOv5 

YOLOv5 [28] offers faster detection speed and a smaller model compared to YOLOv4, with 
improvements in both network architecture and training strategies. In the YOLOv5 network structure, 

the authors used the Focus module before the image enters the backbone, enhancing the model's 

computational efficiency through slicing. In later versions, the Focus module was replaced with 6×6 
convolutions to enable more efficient GPU operation. Additionally, the SPPF structure replaced the SPP 

structure, significantly improving computational speed. Moreover, data augmentation methods such as 

Mosaic, Copy-paste, and Random affine [29] were adopted to enhance the model's detection accuracy. 

In terms of training strategies, YOLOv5 enhanced the model's generalization and robustness through 
multi-scale training and random resizing of input sizes. During the early stages of training, warmup 

training was used with a small learning rate for pre-training, and the cosine learning rate decay strategy 

was employed to optimize the training process. Additionally, YOLOv5 introduced EMA to smooth 
weight updates and used mixed precision training to reduce memory usage and accelerate training speed. 

The combination of these optimization methods enabled YOLOv5 to maintain efficient training while 

significantly improving detection performance. 
YOLOv5 is divided into four versions based on different depth and width: YOLOv5S, YOLOv5M, 

YOLOv5L, and YOLOv5X. Among these, YOLOv5S is the fastest version, suitable for real-time long-

term detection scenarios. Although YOLOv5 offers very fast detection speeds, its shallower network 

results in some performance degradation in detection accuracy. 

3.6.  YOLOX 

YOLOX [30] builds upon the optimizations and improvements of YOLOv3 and YOLOv5, significantly 

enhancing the overall detection performance of the model. Unlike previous versions of YOLO, YOLOX 
introduces a decoupled head structure, which separates the classification and regression tasks, allowing 

the model to focus more on the current task and improve convergence speed and accuracy. Specifically, 

within the FPN, it includes a 1×1 convolutional layer to reduce channel dimensions, followed by two 

parallel branches to handle classification and regression tasks separately. 
YOLOX adopts an anchor-free approach, eliminating predefined anchor boxes. By directly 

predicting the offset of the target center relative to the grid and the height and width of the target 

bounding box, it simplifies the prediction process, reduces the time consumption from hyperparameters 
and anchor box clustering, and removes restrictions on the detection area. To optimize the sample 

matching process, YOLOX uses the SimOTA [31] strategy, dynamically allocating the number of 

positive samples for different targets, avoiding extra parameter optimization, and improving detection 
speed and accuracy. Additionally, YOLOX improves bounding box localization accuracy by introducing 

the GIoU regression loss function [32] and enhances the model's robustness and efficiency by combining 

Mosaic and MixUp data augmentation and regularization techniques. 

YOLOX is a faster and smaller model, balancing detection accuracy and speed, making it suitable 
for deployment on various devices. It outperforms previous best results on the COCO dataset [33]. 

However, its complex model structure and training process result in slower runtime on devices, and 

there is still room for improvement in small object detection. 

3.7.  YOLOv6 

YOLOv6 [34] incorporates contemporary advanced network design, training strategies, and testing 

techniques into the algorithm. In terms of network structure, it introduces EfficientRep as the backbone, 
using different modules to construct the network depending on the model size, effectively balancing 

computational cost and accuracy. For the neck, YOLOv6 adopts an improved PAN structure as the 

foundation, and additionally uses RepBlock (suitable for small models) or CSPStackRep Block (used 

for large models) to replace the CSPBlock used in YOLOv5. The head part employs a hybrid-channel 
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strategy to build a more efficient decoupled head, further reducing computational cost and inference 

delay. 

Regarding training strategies, YOLOv6 uses an anchor-free detection method and the Task 

Alignment Learning (TAL) algorithm [35] for dynamic allocation of positive samples, significantly 
accelerating the training speed. It also adopts VFL as the classification loss function and SIoU as the 

boundary regression loss function for supervised learning, speeding up network convergence and further 

improving network accuracy. 
On the COCO dataset, YOLOv6 surpasses other models of the same scale in terms of both accuracy 

and speed. YOLOv6 is also dedicated to industrial scenarios, offering eight different model sizes to meet 

various application needs, greatly simplifying the deployment process. 

3.8.  YOLOv7 
YOLOv7 [36] focuses on optimizing model structure and training processes. It introduces Extended 

Efficient Layer Aggregation Networks (E-ELAN), which use group convolution to expand the channels 

and cardinality of computational blocks, significantly reducing the model's parameters and 
computational load without substantial performance loss. Additionally, it proposes model scaling for 

concatenation-based models, considering both depth factor scaling of computational modules and width 

factor scaling of transition layers, thus reducing the drop in hardware utilization during the scaling 
process. Inspired by YOLOv6's RepConv, YOLOv7 employs RepConv without identity connections 

(RepConvN) to replan the reparameterized convolutional structure, enhancing detection accuracy. 

In terms of label assignment strategy, YOLOv7 introduces Coarse for Auxiliary and Fine for Lead 

Loss, using fine labels generated by the Lead head to guide the learning of both the Lead head and the 
Auxiliary head. This enables the Lead head to more accurately perform object localization and 

classification, while the Auxiliary head enhances the training process of the Lead head, increasing the 

model's stability and robustness. 
YOLOv7 surpasses the speed and accuracy of mainstream object detectors of its time. On the COCO 

dataset, YOLOv7 achieved the highest accuracy of 56.8% at an image processing speed of 30 FPS on a 

GPU V100. 

3.9.  YOLOv8 
YOLOv8 [37] mainly draws on the advantages of models such as YOLOv5, YOLOv6, and YOLOX, 

and optimizes based on them. It provides a brand new state-of-the-art (SOTA) model and offers different 

scales of models based on scaling factors to support various tasks such as image classification, object 
detection, and image segmentation, and is also compatible with different hardware platforms. 

YOLOv8 adopts the ELAN [38] concept from YOLOv7, replacing the original C3 structure with a 

more gradient-rich C2f structure in the YOLOv5 architecture. It also employs the Decouple-head and 
Anchor-free strategies, separating classification and regression tasks and removing the model's 

dependency on prior boxes, leading to faster convergence and higher detection rates. Additionally, 

YOLOv8 uses VFL Loss as the classification loss function and DFL loss and CIoU Loss as regression 

loss functions, improving detection performance. For label assignment strategy, YOLOv8 utilizes Task 
Alignment Learning (TAL) to match the most relevant samples and incorporate them into the loss 

function to enhance the model's robustness. 

3.10.  YOLOv9 
YOLOv9 [39] addresses the shortcomings of traditional deep learning methods: in conventional deep 

networks, as input data passes through layers for feature extraction, significant data loss occurs, which 

is detrimental to maintaining image detail and integrity during the detection process. 
To tackle this issue, YOLOv9 introduces the concept of Programmable Gradient Information (PGI), 

which mainly consists of three parts: the main branch, the Auxiliary Reversible Branch, and Multi-level 

Auxiliary Information. For the main branch, PGI only uses the main branch during inference, avoiding 

additional inference costs. To address the extra inference time caused by the reversible structure, the 
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Auxiliary Reversible Branch acts as an auxiliary reversible branch, using an auxiliary supervision 

mechanism to generate gradients to update the original information, thereby retaining important 

information while reducing inference time. To minimize loss during deep supervision, Multi-level 

Auxiliary Information introduces the concept of integrated networks, combining gradients returned by 
different prediction heads to assist in the training of the main branch. Additionally, YOLOv9 features a 

new network architecture, GELAN, which combines CSPNet and ELAN, balancing lightweight design, 

inference speed, and accuracy, while generalizing ELAN so that its convolutional layers can be replaced 
by any computational blocks. 

The YOLOv9 model is lighter and more efficient. Compared to YOLOv8, YOLOv9 achieves better 

detection results on the COCO dataset, with a 49% reduction in parameters and a 43% reduction in 

computational load, yet still achieving a 0.6% improvement in accuracy. 

3.11.  YOLOv10 

Previous versions of YOLO heavily relied on NMS technology for post-processing, significantly 

slowing down the model's inference efficiency. To address this issue, YOLOv10 [40] introduced 
Consistent Dual Assignments for NMS-free Training. This technique employs both one-to-one and one-

to-many detection heads during training, but only uses the one-to-one detection head during inference. 

This approach retains the deep supervision benefits of one-to-many assignments and increases inference 
speed, allowing the model to be deployed end-to-end without additional inference costs. Additionally, 

YOLOv10 improves upon the shortcomings of previous YOLO versions, focusing on two areas: 

Efficiency driven model design and Accuracy driven model design. 

In the Efficiency driven model design, methods such as Lightweight classification head, Spatial-
channel decoupled downsampling, and Rank-guided block design reduce the computational cost and 

improve detection efficiency. In the Accuracy driven model design, techniques like Large-kernel 

convolution and Partial self-attention (PSA) reduce inference overhead, attempting to enhance model 
performance with minimal computational cost. 

YOLOv10 comes in five versions: N, S, M, L, and X, to meet the application needs of different 

scenarios. On the COCO dataset, YOLOv10 aims to achieve state-of-the-art performance across various 

model sizes and attain low-latency end-to-end deployment compared to other YOLO versions. 

4.  Conclusion 

This paper reviews the evolution of the YOLO algorithm from YOLOv1 to YOLOv10, thoroughly 

discussing the key improvements in network architecture, training strategies, and performance 
optimization across different versions. From the foundational infrastructure of YOLOv1 to the advanced 

technologies and architectural optimizations of YOLOv10, the YOLO series has continually enhanced 

detection speed and accuracy through innovation and the integration of advanced technologies, driving 
the development of real-time object detection. 

By introducing techniques such as CSPNet, Anchor-free, data augmentation, and multi-scale training, 

the YOLO algorithm has progressively found a better balance between detection speed and accuracy, 

demonstrating excellent performance in processing real-time images and handling high-complexity 
scenarios. Furthermore, to cater to devices with varying computational capabilities, YOLOv5 and later 

versions offer models in multiple sizes, allowing flexible deployment of the YOLO algorithm across a 

range of devices to meet diverse application needs. 
However, despite significant advancements, the YOLO series algorithms still face challenges, such 

as lower accuracy in small object detection, instability in performance in complex backgrounds, and 

weaker robustness under extreme environmental conditions. Future research can explore more effective 
feature fusion techniques, improved loss functions, and deeper network architecture optimizations to 

further enhance the performance and applicability of the YOLO algorithm. Overall, the YOLO series 

has become a vital tool in the field of object detection, and future efforts will continue to push this 

algorithm series towards higher performance, making it suitable for an even broader range of scenarios. 
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