

Advanced techniques and high-performance computing

optimization for real-time rendering

Qiongxian Zhang

Monash University, Clayton, Australia

zoezhang881@outlook.com

Abstract. Real-time rendering is a cornerstone of modern interactive media, enabling the

creation of immersive and dynamic visual experiences. This paper explores advanced techniques

and high-performance computing (HPC) optimization in real-time rendering, focusing on the use

of game engines like Unity and Unreal Engine. It delves into mathematical models and
algorithms that enhance rendering performance and visual quality, including Level of Detail

(LOD) management, occlusion culling, and shader optimization. The study also examines the

impact of GPU acceleration, parallel processing, and compute shaders on rendering efficiency.

Furthermore, the paper discusses the integration of ray tracing, global illumination, and temporal

rendering techniques, and addresses the challenges of balancing quality and performance,

particularly in virtual and augmented reality applications. The future role of artificial intelligence

and machine learning in optimizing real-time rendering pipelines is also considered. By

providing a comprehensive overview of current methodologies and identifying key areas for

future research, this paper aims to contribute to the ongoing advancement of real-time rendering

technologies.

Keywords: Real-time rendering, game engines, Unity, Unreal Engine, high-performance

computing.

1. Introduction
Real-time rendering has fundamentally transformed the gaming and interactive media industries,

enabling the creation of visually stunning and highly interactive environments. The ability to render

scenes in real-time allows developers to create dynamic experiences that respond instantaneously to user
input, enhancing immersion and engagement. Central to this capability are advanced rendering

techniques and high-performance computing (HPC) optimizations that ensure high-quality visuals while

maintaining efficient performance. Game engines such as Unity and Unreal Engine have become

essential tools for developers, providing powerful graphics pipelines and extensive toolsets that support
complex rendering tasks. Unity’s ease of use and flexibility make it a popular choice for a wide range

of applications, while Unreal Engine is renowned for its high-quality graphics and advanced features.

Both engines leverage sophisticated mathematical models and algorithms to optimize rendering
processes, ensuring that visual quality is not compromised by computational constraints. Parallel

processing techniques are crucial in this context, as they allow rendering tasks to be distributed across

multiple CPU and GPU cores, significantly reducing rendering times and improving frame rates.
Techniques such as Level of Detail (LOD) management, occlusion culling, and shader optimization play

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/90/2024MELB0061

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

14

a vital role in minimizing computational load. Additionally, GPU acceleration and the use of compute

shaders enable developers to perform complex calculations directly on the hardware, further enhancing

rendering efficiency. The integration of ray tracing and global illumination techniques has pushed the

boundaries of realism in real-time rendering, simulating the behavior of light to produce lifelike
reflections, refractions, and shadows. Temporal rendering techniques, which leverage information from

previous frames, also contribute to the visual fidelity of rendered scenes [1]. Despite these advancements,

challenges remain, particularly in balancing quality and performance, and in meeting the stringent
requirements of virtual and augmented reality applications. This paper aims to provide a comprehensive

overview of the current methodologies used in real-time rendering, highlighting the role of mathematical

models and HPC optimizations. It also discusses future directions, including the potential of artificial

intelligence and machine learning to revolutionize the rendering pipeline.

2. Game Engine Capabilities

2.1. Unity for Real-Time Rendering

Unity is renowned for its flexibility and ease of use, making it a popular choice among developers for
real-time rendering applications. Unity’s real-time rendering capabilities are supported by its powerful

graphics pipeline, which includes features such as Physically Based Rendering (PBR), Global

Illumination (GI), and post-processing effects. These features enable the creation of realistic lighting
and material effects that enhance the visual appeal of games. A key aspect of utilizing Unity for real-

time rendering is the implementation of mathematical models to optimize the rendering process. The

Lambertian reflectance model, for example, is used to simulate diffuse reflection, while the Phong

reflection model helps in calculating specular highlights. By adjusting these models’ parameters,
developers can achieve desired visual effects efficiently [2]. Furthermore, Unity’s scripting environment,

which supports C#, allows developers to customize rendering processes and optimize performance by

directly manipulating shaders and graphics APIs, leveraging mathematical algorithms to improve
rendering efficiency. Table 1 summarizes the key features of Unity's real-time rendering capabilities,

the mathematical models used, and their optimization impacts.

Table 1. Unity Real-Time Rendering Features

Feature Description
Mathematical Model

Used

Optimization

Impact

Physically Based

Rendering (PBR)

Simulates realistic lighting and

material interactions.
Microfacet Model 85

Global Illumination (GI)
Calculates indirect lighting to

enhance scene realism.
Radiosity 90

Post-Processing Effects

Adds visual enhancements

such as bloom and depth of

field.

Gaussian Blur

Algorithm
75

Lambertian Reflectance

Model

Used to simulate diffuse

reflection in materials.
Lambertian Equation 60

Phong Reflection Model
Calculates specular highlights

for shiny surfaces.

Phong Reflection

Equation
70

Custom Shader

Manipulation

Allows developers to adjust

shader parameters for

optimized rendering.

Custom Mathematical

Algorithms
80

2.2. Unreal Engine for Real-Time Rendering

Unreal Engine, developed by Epic Games, is another leading platform in the realm of real-time rendering.

Known for its high-quality graphics and extensive toolset, Unreal Engine leverages advanced rendering
techniques such as Ray Tracing and Temporal Anti-Aliasing (TAA) to produce stunning visual effects.

The engine’s Blueprint visual scripting system allows developers to implement complex rendering

Proceedings of the 6th International Conference on Computing and Data Science

DOI: 10.54254/2755-2721/90/2024MELB0061

15

behaviors without writing code, making it accessible to artists and designers. Mathematical models play

a crucial role in Unreal Engine’s rendering capabilities. The Bidirectional Reflectance Distribution

Function (BRDF) is used to model how light interacts with surfaces, and the Cook-Torrance model is

employed to simulate microfacet surface reflectance. These models are integral to achieving realistic
shading and lighting in real-time applications [3]. Additionally, Unreal Engine’s integration with

Nvidia’s RTX technology provides hardware-accelerated ray tracing, further enhancing rendering

quality and performance by utilizing mathematical optimization techniques. Table 2 summarizes the key
features of Unreal Engine's real-time rendering capabilities, the mathematical models used, and their

optimization impacts.

Table 2. Unreal Engine Real-Time Rendering Features

Feature Description Mathematical Model Used
Optimization

Impact

Ray Tracing
Produces realistic reflections,

refractions, and shadows.
Ray Tracing Algorithm 95

Temporal Anti-

Aliasing (TAA)

Reduces jagged edges by

averaging pixel values over

time.

Temporal Anti-Aliasing

Algorithm
85

Blueprint Visual

Scripting

Allows implementation of

rendering behaviors without

writing code.

Graph-Based Algorithms 70

Bidirectional

Reflectance

Distribution Function

(BRDF)

Models how light interacts

with surfaces for realistic

shading.

BRDF Equation 80

Cook-Torrance Model

Simulates microfacet surface

reflectance for detailed

highlights.

Cook-Torrance Equation 90

Nvidia RTX

Integration

Provides hardware-accelerated

ray tracing for improved

performance.

Ray Tracing Optimization

Algorithms
95

2.3. Comparative Analysis of Unity and Unreal Engine

Both Unity and Unreal Engine offer robust real-time rendering capabilities, but they cater to different

needs and preferences within the development community. Unity’s simplicity and flexibility make it
ideal for smaller projects and mobile games, whereas Unreal Engine’s advanced graphics and extensive

toolset are better suited for high-end PC and console games. The choice between the two often depends

on the specific requirements of the project, including the desired level of graphical fidelity, platform

targets, and the development team’s expertise [4]. A comparative analysis of the mathematical models
and algorithms used in both engines can provide insights into their respective strengths and weaknesses.

For instance, while Unity’s PBR model emphasizes ease of use and performance, Unreal Engine’s

BRDF and Cook-Torrance models offer higher fidelity at the cost of increased computational
complexity. Understanding these trade-offs is essential for developers aiming to optimize their real-time

rendering workflows.

3. High-Performance Computing in Real-Time Rendering

3.1. Parallel Processing Techniques
High-performance computing leverages parallel processing techniques to handle the immense

computational demands of real-time rendering. By distributing rendering tasks across multiple CPU and

GPU cores, HPC systems can significantly reduce rendering times and improve frame rates.
Mathematical models such as Amdahl’s Law and Gustafson’s Law are used to predict the potential

Proceedings of the 6th International Conference on Computing and Data Science

DOI: 10.54254/2755-2721/90/2024MELB0061

16

speedup from parallelization and identify the most efficient ways to allocate computational resources.

Techniques such as task-based parallelism and data parallelism allow for the efficient utilization of

available hardware resources. For instance, task-based parallelism can be used to split the rendering

pipeline into independent stages, each processed concurrently, while data parallelism can distribute the
computation of pixel shaders across multiple GPU cores, optimizing performance through mathematical

load balancing algorithms [5].

3.2. Optimization of Rendering Algorithms
Optimizing rendering algorithms is crucial for achieving high-quality real-time rendering. Techniques

such as Level of Detail (LOD) management, occlusion culling, and shader optimization are employed

to minimize the computational load without compromising visual quality. Mathematical models are

integral to these optimization techniques. For example, LOD management involves dynamically
adjusting the complexity of models based on their distance from the camera, using algorithms that

calculate optimal LOD levels. Occlusion culling eliminates the rendering of objects not visible to the

camera, relying on visibility determination algorithms like the Hierarchical Z-Buffer [6]. Shader
optimization focuses on simplifying shader code and minimizing the number of texture lookups and

mathematical operations, ensuring faster execution through efficient algorithm design and analysis.

Figure 1 illustrates the impact of different optimization techniques on rendering performance.

Figure 1. Impact of Optimization Techniques on Rendering Performance

3.3. GPU Acceleration and Compute Shaders

Modern GPUs are designed to handle parallel processing tasks efficiently, making them ideal for real-

time rendering applications. GPU acceleration involves offloading rendering tasks from the CPU to the
GPU, leveraging its parallel processing capabilities to achieve higher performance. Compute shaders, a

feature of modern graphics APIs, allow developers to perform general-purpose computation on the GPU,

enabling the implementation of complex rendering algorithms directly on the hardware. Mathematical

models such as the Finite Difference Method (FDM) and the Finite Element Method (FEM) can be
applied within compute shaders to solve differential equations that describe physical phenomena, such

as fluid dynamics and cloth simulation, thereby enhancing the realism of real-time rendered scenes. [7]

4. Advanced Rendering Techniques

4.1. Ray Tracing in Real-Time

Ray tracing has long been considered the gold standard for realistic rendering, simulating the behavior

of light to produce lifelike reflections, refractions, and shadows. Recent advancements in hardware and
software have made real-time ray tracing feasible, allowing developers to incorporate this technique into

Proceedings of the 6th International Conference on Computing and Data Science

DOI: 10.54254/2755-2721/90/2024MELB0061

17

their games. Mathematical models such as the Whitted Ray-Tracing Algorithm and Monte Carlo

Integration are used to trace light paths and calculate global illumination. Ray tracing in real-time

requires sophisticated algorithms to balance quality and performance, such as hybrid rendering

approaches that combine rasterization and ray tracing, or denoising algorithms that reduce noise in ray-
traced images [8]. These mathematical models are crucial for achieving photorealistic rendering in real-

time applications:

Whitted Ray-Tracing Algorithm
The Whitted Ray-Tracing Algorithm involves tracing rays from the eye (camera) through each pixel

on the screen and into the scene. Each ray can interact with objects through reflection, refraction, and

shadowing. The color C of a pixel can be computed using the following recursive equation:

 C = Clocal + krCreflect + ktCtransmit (1)

Where:

• Clocal is the local illumination at the intersection point (using models like Phong illumination).

• kr is the reflection coefficient.

• Creflect is the color returned by the reflection ray.

• kt is the transmission coefficient.

• Ctransmit is the color returned by the refraction ray.

Monte Carlo Integration
Monte Carlo Integration is used to compute global illumination by averaging the results of multiple

light paths sampled randomly. The integral of the lighting equation can be approximated as:

 I =
1

N
∑ fN

i=1 (xi) (2)

Where:

• I is the integral approximating the global illumination. ⋅ N is the number of samples.

• f(xi) is the radiance contributed by the i-th sampled path.

Combined Mathematical Model for Real-Time Ray Tracing
A comprehensive model combining Whitted Ray-Tracing and Monte Carlo Integration for real-time

applications might look like:

 Cpixel =
1

N
∑ (Clocal(xi) + krCreflect(xi) + ktCtransmit(xi))N

i=1 (3)

Where:

• Cpixel is the final color of the pixel.

• N is the number of samples used in Monte Carlo Integration.

• xi represents the i-th sample point in the scene.
This formula represents the combined use of recursive ray tracing for local illumination and

reflections/refractions, along with Monte Carlo methods for global illumination, crucial for achieving

photorealistic rendering in real-time applications.

4.2. Global Illumination and Light Probes
Global Illumination (GI) simulates the indirect lighting that occurs when light bounces off surfaces,

creating realistic ambient lighting and color bleeding effects. Real-time GI techniques, such as Light

Probes and Voxel Cone Tracing, enable the dynamic calculation of indirect lighting in interactive
environments. Mathematical models underpin these techniques, with Light Probes sampling the lighting

at specific points in the scene and interpolating the results to illuminate objects using spherical

harmonics [9]. Voxel Cone Tracing divides the scene into a grid of voxels and traces cones through the

grid to approximate indirect lighting, using algorithms derived from radiative transfer equations. These
techniques provide a balance between visual quality and performance, making them suitable for real-

time applications.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/90/2024MELB0061

18

4.3. Temporal Rendering Techniques

Temporal rendering techniques leverage information from previous frames to enhance the quality and

performance of real-time rendering. Temporal Anti-Aliasing (TAA) reduces jagged edges by averaging

pixel values over multiple frames, while Temporal Super Resolution (TSR) upscales lower-resolution
images to higher resolutions using temporal data. Mathematical models such as Kalman Filters and

Motion Vector Analysis are used to predict and correct pixel values over time, ensuring smooth and

artifact-free rendering. These techniques require careful handling of motion and camera changes to avoid
artifacts, but when implemented correctly, they can significantly improve the visual fidelity of real-time

rendered scenes. [10]

5. Conclusion

Real-time rendering continues to be a critical area of development in interactive media, driven by
advancements in game engines and high-performance computing. The use of mathematical models and

algorithms to optimize rendering techniques such as Level of Detail (LOD) management, occlusion

culling, and shader optimization has significantly improved both visual quality and performance. GPU
acceleration and compute shaders further enhance these capabilities, enabling the efficient execution of

complex rendering tasks. One of the primary challenges in real-time rendering is balancing graphical

quality with performance. High-quality rendering techniques, such as ray tracing and global illumination,
are computationally intensive and can impact frame rates. Mathematical models such as Pareto

Optimization and Multi-Objective Optimization are used to find the optimal trade-offs between

conflicting objectives, such as rendering quality and computational efficiency. Developers must

carefully optimize their rendering pipelines to achieve the desired visual quality without sacrificing
performance. Future research should focus on developing more efficient rendering techniques and

exploring new hardware capabilities to push the boundaries of real-time rendering. Virtual Reality (VR)

and Augmented Reality (AR) present unique challenges for real-time rendering due to their stringent
performance requirements and need for immersive experiences. Rendering for VR requires maintaining

high frame rates to avoid motion sickness, while AR involves integrating virtual objects seamlessly into

the real world.

References
[1] Hernandez-Ibáñez, Luis, and Viviana Barneche-Naya. "Real-Time Lighting Analysis for Design

and Education Using a Game Engine." International Conference on Human-Computer

Interaction. Cham: Springer Nature Switzerland, 2023.
[2] Masood, Zafar, et al. "High‐performance virtual globe GPU terrain rendering using game engine."

Computer Animation and Virtual Worlds 34.2 (2023): e2108.

[3] Petrenko, Oleksandr, Oleksandr Puchka, and Alex Klimenko. "Revolutionizing VFX Production
with Real-Time Volumetric Effects." ACM SIGGRAPH 2024 Real-Time Live!. 2024. 1-2.

[4] Borkowski, Andrzej, and Piotr Nowakowski. "Use of applications and rendering engines in

architectural design–state-of-the-art." Budownictwo i Architektura 22.1 (2023).

[5] Mohammadi, Iman Soltani, Mohammad Ghanbari, and Mahmoud-Reza Hashemi. "An API-level
frame workload model for real-time rendering applications." Authorea Preprints (2023).

[6] Vries, Tomas de. Implementing real-time ray tracing in Unity to increase the render quality of a

ray tracing visualization tool. Diss. 2023.
[7] Mosler, Pascal, and Nicholas-Andre Edgar Steitz. Towards a bidirectional real time link between

BIM software and the game engine unity. Ruhr-Universität Bochum, 2023.

[8] Kishor, Kaushal, et al. "3D Application Development Using Unity Real Time Platform." Doctoral
Symposium on Computational Intelligence. Singapore: Springer Nature Singapore, 2023.

[9] Usón, Javier, et al. "Real-Time Free Viewpoint Video for Immersive Videoconferencing." 2024

16th International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2024.

[10] Henriques, Horácio, et al. "A mixed path tracing and NeRF approach for optimizing rendering in
XR Displays." Proceedings of the 25th Symposium on Virtual and Augmented Reality. 2023.

Proceedings of the 6th International Conference on Computing and Data Science

DOI: 10.54254/2755-2721/90/2024MELB0061

19

