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Abstract. The application of computer vision analysis technology based on traditional image 
analysis and machine learning techniques in the field of vehicle detection is the focus of this 
paper. This paper fills the gap in previous research and provides a comprehensive overview and 
comparison of vehicle detection models based on computer vision analysis. This paper first 
briefly outlines the goals of vehicle recognition, evaluation indicators of models, and widely 
used datasets; then, it summarizes vehicle detection models based on traditional image 
processing techniques and machine learning techniques. Finally, the advantages and 
disadvantages of various models and sensors are discussed, and potential future development 
directions are proposed. 
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1.  Introduction 
A study shows that self-driving cars can eliminate 94% of traffic accidents caused by driver distraction 
or operational errors [1]. In addition, self-driving systems can help prevent vehicle component failures, 
reduce emissions, and provide convenience for people with disabilities to drive [2]. Consequently, the 
future of automobile design and driving development will be steered towards self-driving. 

Autonomous driving system design usually includes environment perception, behavior decision-
making, motion planning and control [3]. The ability to perceive the environment is the basis of 
autonomous driving [4], requiring the driving system to be able to identify entities such as surrounding 
vehicles, pedestrians, or traffic signs. 

Statistics show that the main threat to drivers often comes from surrounding vehicles [5]. Vehicle 
detection technology reduces this risk by accurately and efficiently detecting surrounding vehicles while 
driving, which is critical to ensuring the safety of drivers and passengers [6]. 

At present, the development challenges of vehicle detection technology mainly caused by poor 
information processing speed. Because of the suddenness of accidents, vehicle detection technology 
requires faster processing speed than other applications, which makes it more complex [7]. The 
introduction of deep learning technology can effectively solve this problem [8, 9]. 

Section 2 introduces the methodology; Section 3 introduces the objectives, common datasets, and 
details vehicle detection algorithms using image analysis, machine learning, and deep learning; Section 
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4 evaluates the strengths and weaknesses of the models; Section 5 outlines the future of vehicle detection 
technology; and Section 6 concludes. 

2.  Methodology 

2.1.  Literature Collection 
To comprehensively cover the latest advancements and research in vehicle detection technology, we 
adopted a systematic literature collection method to ensure that the selected literature is representative 
and of high academic value. 

(1) Database Selection: We primarily retrieved relevant literature from the following databases: 
IEEE Xplore, SpringerLink, ScienceDirect, ACM Digital Library, and Google Scholar. These databases 
contain many high-quality academic papers and conference papers in the field of computer vision and 
autonomous driving, which are the theoretical basis of this article. 

(2) Search Keywords: We used multiple keywords and their combinations for retrieval, including 
but not limited to "vehicle identification", "autonomous driving", "computer vision", "deep learning", 
"machine learning", "object Identification", "semantic segmentation", "instance segmentation", and 
variations of these keywords. 

(3) Time Range: To ensure coverage of the latest research results, we focused mainly on literature 
published after 2010, but also included some important early studies to provide background and 
historical perspective. 

(4) Types of Literature: We selected journal papers, conference papers, review articles, and some 
highly cited and influential doctoral dissertations and technical reports. 

2.2.  Literature Screening 
After initially searching a large amount of literature, we conducted a two-stage screening to ensure that 
we obtained literature that was close to the research topic and had sufficient academic value. 

(1) Initial Screening: Preliminary screening was conducted through titles and abstracts to exclude 
literature that is not related to vehicle identification. The initial screening criteria included the subject 
of the document, research methods, and application scenarios. 

(2) Detailed Screening: Full-text reading was performed on the documents that passed the initial 
screening, and further screening was conducted based on the relevance and innovation of the research 
content, methods, and results. Detailed screening criteria included the innovation of research methods, 
rigor of experimental design, reliability of results, and academic influence of the literature. 

2.3.  Classification and Organization 
To systematically summarize and compare different vehicle detection technologies, the screened 
literature was classified and organized according to technical types and application scenarios. 

(1) Traditional Image Processing Technology: Includes vehicle detection methods based on 
features such as color, symmetry, contour, texture, shadow, and taillights. After classification, the basic 
principles, implementation steps, application scenarios, and advantages and disadvantages of these 
methods were analyzed. 

(2) Machine Learning Technology: Includes feature extraction methods such as HOG, LBP, Haar-
like, and classifiers such as SVM, AdaBoost, and KNN. After classification, the performance of different 
feature extraction methods and classifiers was compared, and their performance and limitations in 
practical applications were discussed. 

(3) Deep Learning Technology: Includes object Identification, semantic segmentation, and instance 
segmentation methods based on convolutional neural networks (CNN). Detailed descriptions of the 
architectures, training methods, datasets, and application effects of different deep learning models in 
vehicle detection tasks were provided. 
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2.4.  Model Evaluation and Analysis 
We perform quantitative and qualitative analysis of experimental results reported in the literature to 
objectively compare the performance of different technical approaches. 

2.4.1.  Quantitative Analysis 
The experimental results of different technical methods on public datasets are sorted out and compared 
using the following indicators: 

(1) Precision (P): The proportion of correctly detected vehicles in the detection task to actual 
vehicles. 

(2) Recall (R): The proportion of actual vehicles that are correctly detected. 
(3) F1 score: The harmonic mean of precision and recall, which comprehensively evaluates the 

detection performance of the model. 
(4) Accuracy (AP): The proportion of correct predictions by the model, suitable for classification 

tasks. 
(5) Mean average accuracy (mAP): The average detection accuracy of all categories, which 

comprehensively evaluates the prediction performance of the model. 
(6) Intersection over Union (IoU): Evaluates the accuracy of bounding box prediction. 
(7) Frame rate (FPS): The number of image frames that the model can process per second, which 

evaluates the recognition speed of the model. 
(8) Floating point operations (FLOP): A quantitative indicator of model complexity. The smaller 

the FLOP value, the smaller the computational burden. 
The calculation formulas for the above parameters are as follows: 
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Among them, true positives (TP) are the number of samples correctly identified as positive by the 
model; false positives (FP) are the number of negative samples mistakenly identified as positive by the 
model; false negatives (FN) are the number of positive samples mistakenly identified as negative by the 
model; in the mAP formula, n is the number of identified target categories; in the IoU formula, Pb is the 
predicted box and Gb is the real box. 

2.4.2.  Qualitative Analysis 
Analyzed the advantages and disadvantages of different technical methods, including model complexity, 
computational cost, environmental adaptability, and performance and limitations in practical 
applications. 
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2.5.  Future Directions 
Based on the current technical challenges and research trends presented in the literature, several potential 
directions for future research are proposed. 

3.  Vehicle Detection Model Based on Computer Vision Analysis Technology 

3.1.  Introduction of Vehicle Detection Target and Datasets 

3.1.1.  Vehicle Detection Target 
Vehicle detection algorithms require real-time detection and analysis of multiple targets, so setting 
targets with universal detection significance during model design can improve model operation 
efficiency. Common vehicle detection system targets mainly include: 

(1) Vehicle positioning: Locating the position of surrounding vehicles in an image or video 
(2) Vehicle classification: Determine the type of vehicle in an image, such as a car, truck, bus, etc. 
(3) Vehicle tracking: Track the position and trajectory of vehicles in a video sequence. 
(4) License plate detection: Identify and read the license plate number of a vehicle. 

3.1.2.  Selection of Datasets 
In the review, we selected some commonly used public datasets for detailed discussion. These datasets 
are widely used in vehicle detection research, have high authority, and cover different scenarios and 
conditions, which are helpful for comprehensive evaluation and comparison of the performance of 
different vehicle detection technologies. Table 1 summarizes some key data in these datasets, such as 
year, location, category, 3D boxes, annotation, scenario, and application scenario, where 3Db. represents 
3D box, Cl. represents category, Sc. represents scenario, and An. represents annotation. 

Table 1. Commonly Used Public Vehicle Detection Datasets 

Dataset Year Loc. Sc. Cl. An. 3Db. Application Scenarios 

KITTI 2012 Karlsruhe 
(DE) 22 8 15 k 200 k 

Applicable to a variety of 
application scenarios, providing 
rich annotations and diverse 
environmental conditions [10]. 

Cityscapes 2016 50 cities - 30 25 k - 

Mainly oriented to segmentation 
tasks, suitable for image 
segmentation of urban road scenes 
[11]. 

BDD100K 2018 
San Francisco 
and New York 
(US) 

100 k 10 100 k - 

Contains a large amount of data, 
suitable for large-scale data 
processing and analysis, especially 
computer vision tasks related to 
autonomous driving [12]. 

Waymo 
open 2019 6 cities in US 1 k 4 200 k 12 M 

Focuses on computer vision tasks, 
data covers all-weather conditions, 
and is applicable to a variety of 
complex scenarios [13]. 

nuScenes 
 2019 Boston (US), 

Singapore 1 k 23 40 k 1.4 M 

Data collected in high-density 
traffic and extremely challenging 
driving situations, suitable for 
detection and tracking tasks in 
autonomous driving [14]. 

CADC 2020 Waterloo 
(CA) 75 10 7 k - 

Focuses on snow driving data, 
suitable for driving scene research 
in severe weather conditions [15]. 
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RADIATE 2021 UK 7 8 - - 
Focuses on tracking and scene 
understanding in severe weather 
conditions using radar sensors [16]. 

SHIFT 2022 8 cities - 23 2.5 M 2.5 M 
Synthetic driving dataset, suitable 
for continuous multi-task domain 
adaptation research [17]. 

Argo verse 
2 2023 6 cities in US 250 k 30 - - 

The latest large-scale LiDAR 
sensor dataset, suitable for 3D 
tracking tasks and the development 
of advanced autonomous driving 
systems [18]. 

3.2.  Traditional-Based Methods for Vehicle Identification 
Traditional vehicle identification technology is usually divided into two stages: hypothesis generation 
(HG) and hypothesis verification (HV). First, in the HG stage, the system determines the processing 
region (ROI) by analyzing the vehicle image features. Then, in the HV stage, the system determines 
whether the target vehicle is within the ROI. In short, HG is the basis, and HV is further verification, 
and the two complement each other. The following are some commonly used vehicle identification 
features: 

(1) Color: By setting an appropriate segmentation threshold based on the consistency and 
concentration of colors in the image, the vehicle can be isolated from the background [19, 20]. However, 
color feature-based technology is easily affected by light changes and mirror reflections [21]. 

(2) Symmetry: The symmetrical structural features of the vehicle's rear end help to reflect the 
vehicle model in the image ROI, which can not only optimize the vehicle boundary, but also be used in 
the HV stage to verify whether the ROI contains the target vehicle. However, symmetry retrieval will 
increase the recognition time [22].  

(3) Contour: Vehicle geometry features extracted from the image (such as body shape, bumper, rear 
window, and license plate) can further determine the vehicle's contour. However, in some scenes, these 
edge lines may overlap with some lines in the background, resulting in false positives [23, 24].  

(4) Texture: The texture distribution on the road surface is usually uniform, while the texture 
distribution on the vehicle surface tends to be uneven. Vehicles can be detected indirectly by 
distinguishing between these two situations, but relying solely on texture features to identify vehicles 
may result in low accuracy [25].  

(5) Shadow: In bright daylight, the shadow under the vehicle on the road can be extracted as the 
vehicle's ROI using a segmentation threshold, but in the machine recognition process, this area cannot 
form a clear boundary with the road surface, which may result in low accuracy or even false positives, 
so its application scenarios are limited [26, 27]. 

(6) Taillights: The taillights of vehicles at night are red, and this information is relatively easy to 
extract through image processing technology against a dark background. However, this feature is only 
effective at night [28, 29]. 

Traditional vehicle detection technologies are low-cost and simple in principle, but these methods 
are usually based on empirical theories and are easily affected by environmental interference. 

3.3.  Vehicle Detection Based on Machine Learning 
The fundamental concept of ML technology is to utilize data and models to imitate human learning 
techniques.ML models, when applied to vehicle identification, process and encode images of vehicles 
through pre-crafted features such as color, contour, symmetry, and grayscale, transforming data from a 
high-dimensional image space to a low-dimensional one. This process includes the processing, encoding, 
and continuous training of vehicle images, and finally generates a model that can be used for vehicle 
identification. 

Table 1. (continued). 
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Vehicle recognition based on machine learning technology is mainly divided into two stages: first, 
extracting the features of the input image; then inputting the extracted features into the classifier for 
training and optimization. Through continuous optimization, these models can effectively distinguish 
and classify various vehicles. 

3.3.1.  Feature Extractor  
An effective feature extraction technique must be able to easily extract and find features when the 
vehicle poses and type change while maintaining the consistency of vehicle features.  

Widely employed for feature extraction in object detection applications, the Histogram of Oriented 
Gradients (HOG) is a popular choice. Subsequently, many researchers have further developed this model, 
such as dual HOG vectors [30], HOG pyramids [31], and symmetric HOG [32].  

Other feature extraction methods commonly used for vehicle detection include Haar-like vectors [33], 
local binary patterns (LBP) [34], Gabor filters [35], and speeded up robust features (SURF) [36]. 

3.3.2.  Classifiers 
ML classifiers can distinguish between vehicles and non-vehicle objects based on specific features 
extracted from images. Typically, the model must be trained using an accurately labeled dataset to 
distinguish between positive and negative examples. Classifiers for vehicle detection most employed 
include AdaBoost, K-nearest neighbor (KNN), Naive Bayes (NB), support vector machine (SVM), and 
decision tree (DT). 

When choosing a classifier, one must strike a balance between generalization, which measures how 
well a model can adapt to new data, and fit accuracy, which measures how well a classifier can 
accurately identify patterns and information in the training data.The classic machine learning technique 
of ensemble learning unites the forecasts of multiple base classifiers to augment the overall prediction 
capability [37, 38]. 

Vehicle detection based on machine learning requires scanning the entire image to obtain features, 
but this increases the computational cost and time because most areas do not have vehicle features [39]. 
Combining traditional feature extraction methods with classifiers has successfully addressed this 
challenge. 

Table 2 lists several studies on the application of feature engineering and classifiers in vehicle 
recognition. 

Table 2. Various Research Works Focusing on Feature Extractor and Classifiers in The Context of 
Vehicle Identification. 

Feature 
extractor  Classifier Dataset Accuracy Reference 

HOG Adaboost GTI vehicle database and real traffic scene videos 98.82% [40] 
HOG GA-SVM 1648 vehicles and 1646 non-vehicles 97.76% [41] 
HOG SVM 420 road images from real on-road driving tests 93.00% [42] 

HOG SVM GTI vehicle database and another 400 images from 
real traffic scenes 93.75% [43] 

Haar-like Adaboost Hand-labeled data of 10,000 positive and 15,000 
negative examples - [44] 

SURF SVM 2846 vehicles from 29 vehicle makes and models 99.07% [45] 
PCA SVM 1051 vehicle images and 1051 nonvehicle images 96.11% [46] 
SIFT SVM 880 positive samples and 800 negative samples - [47] 

3.4.  Deep Learning-Based Methods for Vehicle Identification 
Machine learning models that rely on preset feature extractors and classifiers limit the model’s 
computable data ability to a certain extent. Deep learning, especially convolutional neural networks 
(CNNs), can effectively solve this problem [48]. 
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Figure 1 intuitively shows the differences and relevance of four common deep learning model-based 
vehicle detection technologies: (a) object classification, (b) object Identification, (c) semantic 
segmentation, and (d) instance segmentation. Object classification models can find and label various 
entity categories in an image; object detection goes a step further and can locate the relative positions 
of objects of each category through bounding boxes. Semantic segmentation labels entities of different 
categories after grayscale processing of the image; instance segmentation goes a step further and directly 
distinguishes different object boundaries in the image [49]. 

 
Figure 1. Relationship And Comparison Between Different Vehicle Detection Algorithms 

3.4.1.  Object Identification-based Methods 
Generally speaking, object detection models can be divided into anchor-based, anchor-free, and end-to-
end recognizers, as shown in Table 3. Figure 2 shows the applications of these three recognizers. 

 
Figure 2. The Real-World Application of Different Identifiers 
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Table 3. Three Object Identification-Based Types, The Identifiers of The Model 

model definition sub model definition examples Explain 

Anchor-Based 
Recognizers 

By comparing 
the object 
bounding box 
with predefined 
anchor boxes in 
the image, the 
location and 
category of the 
object can be 
predicted. 

Two-Stage 
Recognizers 

Extract regional 
features, then 
classify and 
refine them to 
identify the 
target. More 
accurate but 
slower. 

(1) R-CNN series [50-52] 
(2) FPN [53] 
(3) SPP-Net [54] 
(4) R-FCN [55] 

Faster R-CNN [50] is used 
by adding a separate 
regional proposal network 
to the traditional R-CNN 
model to reduce the time 
required for detection. 

One-Stage 
Recognizers 

Directly predict 
object locations 
and classes 
from feature 
maps. Faster 
but generally 
less accurate. 

(1) SSD [56] 
(2) RetinaNet [57] 
(3) YOLO series 
(YOLOv1 to YOLOv5) 
[58-61] 

YOLOv1 is the foundation 
of the YOLO series. 
Subsequent YOLO models 
(from YOLOv2 to 
YOLOv5) are 
continuously optimized 
based on anchor design, 
for example: 
(1) YOLOv4: strives to 
achieve an ideal balance 
between detection speed 
and accuracy. 
(2) YOLOv5: optimized 
for performance on mobile 
devices. 

Anchor-Free 
Recognizers 

Make 
predictions 
based on the 
center point or 
key points of 
the object. This 
is usually more 
computationally 
efficient. 

Key Point 
Based Models 

Detect key 
points to form 
bounding 
boxes. 

(1) CornerNet [62] 
(2) Repoints [63] 
(3) CenterNet [64] 
(4) ExtremeNet [65] 

Corner Net defines the 
boundary of an object by 
identifying a pair of key 
points. Center Net uses 
three sets of key points to 
define the boundary to 
improve detection 
accuracy and memory. 

Center-Based 
Models 

Predict the 
center point of 
the object and 
its relationship 
to the bounding 
box. 

(1) GA-RPN [66] 
(2) FSAF [67] 
(3) Fovea Box [68] 
(4) YOLOv9 [69] 

(1) The GA-RPN 
algorithm classifies pixels 
in the center area of an 
object as positive 
examples, and then 
predicts the object 
position, width, and height 
based on Faster R-CNN. 
(2) YOLOv9 introduces 
generalized ELAN based 
on YOLOv7 (YOLOv7: 
uses the Efficient Layer 
Aggregation Network 
(ELAN) as the basic 
framework and uses a 
large number of 
parameterized 
convolutions to improve 
inference speed [70]) and 
supplies programmable 
gradient information for 
custom network structures, 
further improving 
recognition efficiency. 
YOLOv9 is expected to 
soon become the industry 
standard for anchor-free 
recognizers. 



Proceedings	of	the	6th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/88/20241614

37

End-to-End 
Recognizers 

Directly 
analyze input 
images without 
complex pre- or 
post-processing. 

traditional 
convolutional 
networks- 
based 

- (1) DeFCN [71] 
(2) Sparse R-CNN [72] 

(1) DeFCN is based on the 
concept of FOCS and 
combines the 
corresponding "prediction-
perception" labels for 
classification. 
(2) Sparse R-CNN is 
trained with a set of 
predetermined features and 
then performs object 
recognition and 
classification on samples. 

DETR neural 
network 

A Transformer-
based neural 
network that 
uses a self-
attention 
mechanism for 
encoding and 
decoding to 
achieve end-to-
end recognition 
and model 
global feature 
information 
[73]. 

(1) Deformable DETR [74] 
(2) Anchor-DETR [75] 
(3) RT-DETR [76] 

The encoder-decoder 
architecture can encode 
image features into high-
dimensional vectors and 
then decode them into 
vehicle categories and 
locations, while DETR 
uses Transformer to 
integrate object 
recognition tasks into this 
process. 

3.4.2.  Segmentation-Based Methods 
Segmentation-based deep learning algorithms are divided into semantic segmentation and instance 
segmentation, see Table 4 for details. 

Table 4. Comparison Between Semantic Segmentation and Instance Segmentation 

characteristic semantic segmentation instance segmentation 

Objectives 
Classify each pixel in the image and 
distinguish between pixels of various 
categories [77]. 

Detect and describe each object instance 
in the image, distinguishing different 
instances of the same category [78]. 

Precision and 
accuracy Supplies high precision and accuracy [77, 78]. 

Information 
provision Supplies detailed information on the vehicle's location and shape  [77, 78]. 

Importance in 
autonomous 
driving 

It is a critical component of autonomous driving environment perception [77, 
78]. 

Model types Fully supervised and weakly supervised models [79]. 
Characteristics of 
weakly supervised 
models 

Use incomplete, inaccurate or mislabeled data for training at low cost and with 
less labeled data required [79]. 

Disadvantages of 
weakly supervised 
models 

Affected by noise or incorrect labeling, the detection accuracy is low, which may 
seriously affect the performance and safety of autonomous driving [79]. 

Priorities of fully 
supervised models 

Due to the lack of security of weakly supervised models, fully supervised models 
are usually used in most cases [79]. 

Summary 

Good at classifying and 
distinguishing pixels of different 
categories, providing detailed 
location information, and is a key 
technology for autonomous driving. 

Good at accurately identifying and 
describing individual vehicle instances. 
In safety-critical applications, fully 
supervised models are often preferred to 
ensure reliability and accuracy. 

Table 3. (continued). 
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Table 5 shows some other more advanced segmentation-based deep learning algorithms for vehicle 
recognition. 

Table 5. Other Segmentation-Based Deep Learning Algorithms 

Model Definition Examples Detailed description 

Fully 
Convolutional 
Networks 
(FCNs) 

In 2015, the fully 
connected layer was 
replaced with a 
convolutional layer for 
the first time, and a jump 
architecture was used to 
integrate feature data 
[80]. 

(1) SegNet 
(2) DeepLab 
Series 

(1) SegNet: Based on an encoder-
decoder system, the encoder's low-
resolution representation is mapped 
to the full input resolution feature 
map [81]. 

(2) DeepLabv1: Combining CRF model 
and dilated convolution technology 
to extract image information [82]. 

(3) DeepLabv2: Integrates the Resnet 
[83] backbone and the expanded 
spatial pyramid pooling (ASPP) 
module [84]. 

(4) DeepLabv3: Combining the ideas of 
DeepLabv1 and DeepLabv2, it can 
segment objects of different scales 
[85]. 

(5) DeepLabv3+: Based on Xception  
[86],it uses depth wise separable 
convolution to replace 
convolutional layers and pooling 
layers [87]. 

RefineNet 

Prevent image resolution 
loss by combining high-
level features with more 
refined low-level 
components. 

RefineNet 
Combining high-level features with more 
refined low-level components to prevent 
image resolution degradation [88]. 

PSPNet 

A pyramid pooling 
module is proposed to 
mine global context data 
by combining different 
regions. 

PSPNet 
A pyramid pooling module is proposed to 
mine global context data by combining 
different regions [89]. 

ICNet 

Combining multi-
resolution branches with 
correct label guidance, a 
cascaded feature fusion 
unit is introduced to 
achieve fast and 
advanced segmentation. 

ICNet 

Combining multi-resolution branches 
with correct label guidance and 
introducing cascaded feature fusion units 
for fast and ultramodern segmentation 
[90]. 
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Generative 
Adversarial 
Networks 
(GANs) 

Attempts were made to 
use generative 
adversarial networks for 
vehicle semantic 
segmentation, obtaining 
deep contextual 
information of images 
through cross-layer 
structures and reducing 
the amount of 
computation. However, 
the network is unstable 
during training and fine-
tuning, which can easily 
lead to model collapse 
and local optimality. 

GANs 

The cross-layer structure obtains deep 
context information of the image and 
reduces the computational cost. However, 
it is unstable during training and fine-
tuning, which can easily lead to model 
crash and local optimality [91, 92]. 

Transformer-
based 
Architectures 

Used as a powerful 
feature extractor for 
semantic vehicle 
recognition. 

(1) SERT 
(2) SegFormer 
(3) Sea Former 

(1) SERT: Based on ViT [93],it 
integrates multiple CNN decoders to 
enhance feature resolution [94]. 

(2) SegFormer: It designs a 
revolutionary hierarchical 
Transformer module to obtain 
multi-scale features and uses MLP 
to merge features from each layer 
for decoding [95]. 

(3) Sea Former: It uses axis 
compression and detail 
enhancement attention modules to 
achieve an ideal balance between 
segmentation accuracy and quality 
on ARM architecture mobile 
devices [96]. 

Lightweight 
Models 

Future demand for 
lightweight models 
requires both speed and 
accuracy, with recent 
research focus in the 
field of autonomous 
driving. 

ESPNet 
LEDNet 

(1) ESPNet: Using convolutional 
modules, it is 22 times faster and 
180 times smaller than existing 
vehicle semantic segmentation 
networks [97]. 

(2) LEDNet: Using an asymmetric 
encoder-decoder design, it achieves 
0.706 mIoU and 71 FPS on the 
Cityscapes dataset using an 
NVIDIA Titan X [98]. 

4.  Evaluation 
The following is a qualitative analysis of the algorithms listed in Section 4. Because the test goals in 
different test environments have different focuses, and the data obtained and used are also different, this 
article cannot provide specific data, and can only consider the following general situations: 

(1) Datasets: Evaluation is done using standard, public datasets such as COCO, Pascal VOC, 
Cityscapes, etc. 

(2) Hardware: Testing is done on a computer with a high-performance NVIDIA GPU. 
(3) Implementation: Using the standard Python deep learning framework. 

Table 5. (continued). 
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4.1.  Traditional-Based Methods for Vehicle Identification 

Table 6. Qualitative Analysis of Vehicle Recognition Based on Traditional Computer Vision Analysis 
Technology 

Algorithm Advantages Disadvantages 

Color-Based  Fast, low cost, simple Affected by light changes, 
reflections 

Symmetry-
Based 

Optimizes vehicle boundaries, enhances 
Identification 

Time-consuming, reduces 
efficiency 

Contour-Based Uses geometric textures, effective in clear scenes False positives in textured 
backgrounds 

Texture-Based Can differentiate between road and vehicle textures Low accuracy relying solely on 
texture 

Shadow-Based Effective in bright daylight Low accuracy, false positives in 
certain conditions 

Tail Light-
Based Effective for nighttime Identification Limited to nighttime Identification 

4.2.  Vehicle Detection Based on Machine Learning 

Table 7. Evaluation Of Vehicle Recognition Algorithms Based on Machine Learning Models 
Feature 

Extractor Classifier Accuracy Precision Recall F1  
Score mAP FPS FLOP Advantages Disadvantages 

HOG Adaboost 98.82% High High High High Low High Satisfactory 
performanc

e for 
vehicle 

identificati
on, robust 
to lighting 
conditions 

Computationall
y expensive, 
less effective 

for small 
objects or 

objects with 
varying 

appearances 

HOG GA-
SVM 97.76% High High High High Low High 

HOG SVM 93.00% High High High High Low High 

HOG SVM 93.75% High High High High Low High 

Haar-like Adaboost - - - - - High Low 

Fast 
computatio
n, effective 

for face 
Identificati

on 

Not highly 
effective for 

vehicle 
identification, 

high false-
positive rate 

SURF SVM 99.07% High High High High Low High 

Good for 
object 

recognition, 
fast and 
robust 

Computationall
y expensive, 

requires more 
processing 

power 

PCA SVM 96.11% High High High High Low Low 

Reduces 
dimensiona
lity, speeds 

up the 
training 
process 

Might lose 
some 

information 
during 

transformation, 
less effective 
for complex 

images 

SIFT SVM - - - - - Low High 

Excellent 
for 

identifying 
distinct 
features, 

scale, and 
rotation 
invariant 

Slow 
computation, 

high 
complexity 
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4.3.  Deep Learning-Based Methods for Vehicle Identification 

4.3.1.  Object Identification-Based Methods 

Table 8. Evaluation Of Vehicle Recognition Algorithms Based on Deep Learning Object Recognition 
Models 

Algorithm Accuracy Precision Recall F1 
Score mAP IoU FPS FLOP Advantages Disadvantages 

Anchor-Based Recognizers 

R-CNN 
series High High High High High High Low High 

High 
precision, 

suitable for 
complex 
scenes 

Large amount 
of calculation, 

slow speed 

FPN High High High High High High Medium Medium 

Multi-scale 
feature 
fusion 

improves 
detection 
accuracy 

Increased 
computational 

complexity 

SPP-Net High High High High High High Medium Medium 

Spatial 
pyramid 
pooling, 
manage 
different 

scales 

Large model, 
complex 
training 

R-FCN High High High High High High Medium Medium 

Efficient 
area 

detection, 
fast speed 

Slightly lower 
accuracy than 
R-CNN series 

SSD High High High High High High High Low 

Fast speed, 
suitable for 
real-time 
detection 

Poor detection 
effect on small 

objects 

YOLO 
series High High High High High High High Low 

Fast speed, 
suitable for 
real-time 
detection 

Poor detection 
effect on small 

objects and 
dense objects 

Anchor-Free Recognizers 

CornerNet High High High High High High Medium Medium  high 
accuracy 

The model is 
complex, and 
the amount of 
calculation is 

large 

Repoints High High High High High High Medium Medium 

High 
accuracy, 

strong 
robustness 

The training is 
complex and 

requires a lot of 
data 

CenterNet High High High High High High Medium Medium fast speed 
The detection 
effect of small 
objects is poor 

ExtremeNet High High High High High High Medium Medium 

High 
accuracy, 
accurate 

positioning 

The calculation 
complexity is 

high 

GA-RPN High High High High High High Medium Medium 

High 
accuracy, 

strong 
robustness 

The calculation 
complexity is 

high 

FSAF High High High High High High Medium Medium 

High 
accuracy, 
processing 
unbalanced 

data 

The training is 
complex and 

requires a lot of 
data 
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Fovea Box High High High High High High Medium Medium 

High 
accuracy, 

multi-scale 
processing 

The calculation 
amount is large, 
and the training 

time is long 

YOLOv9 High High High High High High High Low 
Fast speed, 

high 
accuracy 

The detection 
effect of 

complex scenes 
is poor 

End-to-End Recognizers 

DeFCN High High High High High High Medium Medium 

Efficient 
feature 

extraction, 
high 

precision 

Complex 
training, 

requiring a 
large amount of 

data 

Sparse R-
CNN High High High High High High Medium Medium 

High 
precision, 
processing 
sparse data 

Complex 
model, large 
amount of 
calculation 

Deformable 
DETR High High High High High High Medium Medium 

High 
precision, 
processing 
complex 
deformed 

objects 

High 
computational 

complexity 

Anchor-
DETR High High High High High High Medium Medium 

Anchor-free 
detection, 

high 
precision 

Complex 
training, slow 

speed 

RT-DETR High High High High High High Medium Medium 

Fast speed, 
suitable for 
real-time 
detection 

Poor detection 
effect on small 

objects and 
dense objects 

4.3.2.  Segmentation-Based Methods 

Table 9. Evaluation Of Vehicle Recognition Algorithms Based on Deep Learning Image Segmentation 
Models 

Algorithm Accurac
y 

Precisio
n Recall F1 

Score mAP IoU FPS FLOP Advantages  Disadvantages 

SegNet Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m High Low 

Simple 
structure, 

suitable for 
real-time 

application 

General 
accuracy 

DeepLab 
Series High High High High High High Mediu

m 
Mediu

m 

Applicable 
to a variety 
of scenes, 

high 
precision 

Large 
computational 

workload 

RefineNet High High High High High High Mediu
m 

Mediu
m 

Multi-level 
refinement, 

improve 
segmentatio
n accuracy 

High 
computational 

complexity 

PSPNet High High High High High High Mediu
m 

Mediu
m 

Beneficial 
effect of 

processing 
multi-scale 
information 

Complex 
implementatio

n, long 
training time 

ICNet Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m High Low 

Suitable for 
real-time 

application, 
fast speed 

Low accuracy 

Table 8. (continued). 
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GANs Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m Low High 

Can 
generate 

high-quality 
images and 
have strong 
adaptability 

The training is 
unstable, and 

the adjustment 
is complex 

SERT Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Combined 
with 

Transforme
r, improve 
the long-

range 
dependence 

capture 
capability 

The model is 
complex and 

computationall
y intensive 

SegForme
r High High High High High High Mediu

m 
Mediu

m 

Efficient 
and suitable 
for multiple 

scenarios 

Large resource 
consumption 

Sea 
Former 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Good 
balance, 
precision 
and speed 
balance 

Realize the 
complex, 

difficult to 
adjust the 
reference 

ESPNet Low Low Low Low Low Low High Low 

Lightweight 
design, 

suitable for 
mobile 
devices 

Low accuracy 

DFANet Low Low Low Low Low Low High Low 

Efficient 
and suitable 

for real-
time 

applications 

General 
accuracy 

LEDNet Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m 

Mediu
m Low 

Lightweight 
design, with 

better 
performanc

e 

General 
accuracy 

5.  Future Trends 
This paper, after contrasting various algorithms, proffers a vision for the forthcoming advancement of 
vehicle detection technology, with the aim of diminishing the major deficiencies of the existing 
algorithms, as showed in Table 5. 

Table 10. Development Trend of Future Vehicle Detection Algorithms 

Research Direction Details 

Balancing Speed and 
Accuracy 

Future research should focus on developing network architectures that balance 
speed and accuracy, especially for low-complexity, fast-processing on-board 
chips. 

Multi-Sensor Fusion 
Strategy 

Future research should improve fusion algorithms to use multi-scale 
information effectively and design robust protocols for better sensor 
collaboration. 

Multi-Task Algorithm 

Current methods are perfected for specific scenarios but lack versatility in 
diverse environments (e.g., fog, night, rain). Integrating multiple algorithms 
into a dynamic framework can improve detection speed, accuracy, and 
adaptability, reducing perception failures and enhancing robustness in varied 
traffic conditions. 

Table 9. (continued). 
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Unsupervised Learning 

Supervised learning requires extensive labeled data and computational 
resources. It has limitations in generalization to new scenarios. Future 
research should focus on developing semi-supervised or weakly supervised 
algorithms to use unlabeled data, improving recognition accuracy across a 
broader range of conditions. 

6.  Conclusion 
This paper reviews the vehicle recognition models based on computer vision analysis technology and 
evaluates various algorithms. On this basis, the future development direction of vehicle recognition 
algorithms is proposed. 
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