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Abstract. In the context of the current era of big data, traditional Hadoop and cluster-based 
MapReduce frameworks are unable to meet the demands of modern research. This paper presents 
a MapReduce framework based on the AliCloud Serverless platform, which has been developed 
with the objective of optimizing word frequency counting in large-scale English texts. 
Leveraging AliCloud's dynamic resource allocation and elastic scaling, we have created an 
efficient and flexible text data processing system. This paper details the design and 
implementation of the Map and Reduce phases and analyses the impact of vCPU and memory 
specifications, as well as parallel resource allocation on system performance. Experimental 
results show that increasing vCPU specifications significantly improves processing capacity and 
execution efficiency. While the impact of memory specifications is relatively minor, it can 
positively influence performance in specific scenarios. Parallel processing markedly enhances 
system performance. Experiments on "Harry Potter and the Sorcerer's Stone" validate the 
framework's performance across various configurations. This study offers valuable insights for 
the design and optimization of serverless-based MapReduce frameworks, as well as suggesting 
future enhancements. These include the implementation of advanced parallel computing 
strategies, improved error handling, and refined data preprocessing, which collectively aim to 
boost system performance and stability. 

Keywords: MapReduce framework, Serverless, AliCloud, word frequency statistics, distributed 
computing. 

1.  Introduction 
Nowadays, all kinds of data show explosive growth and the era of big data has arrived, MapReduce as 
a popular parallel programming model is highly favored due to its wide application in the field of large-
scale data processing [1, 2]. However, past research has focused on traditional Hadoop and cluster-based 
MapReduce frameworks, which provide effective solutions to process and analyze large-scale datasets, 
but the traditional data processing paradigm is no longer able to meet the needs of researchers [3]. In 
this context, Serverless architecture brings new ideas for distributed computing [4]. The emergence of 
Serverless architecture provides users with the ability of dynamic resource allocation and elastic scaling, 
which greatly simplifies the deployment and management of distributed computing tasks.  

This study aims to explore the design, implementation and optimization of MapReduce framework 
based on AliCloud Serverless platform. By fully utilizing the dynamic resource allocation and elastic 
scaling characteristics of AliCloud Serverless architecture, an efficient and flexible text data processing 
system is constructed to provide users with better word frequency statistics solutions. The study not only 
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provides a detailed description of the design and implementation of the MapReduce framework, but also 
experimentally evaluates the impact of vCPU specification, memory specification, and parallel resource 
configuration on the system performance, thus providing an important reference for further research and 
optimization of the MapReduce framework under the Serverless platform. 

2.  Rationale analysis 

2.1.  Literature review 
In recent years, MapReduce research under Serverless platform has gradually attracted attention. With 
the computing resources provided by cloud service providers, researchers have started to explore how 
to design and optimize MapReduce frameworks in Serverless environments to solve the performance 
bottlenecks and cost problems existing in traditional MapReduce frameworks. Currently, there are some 
related works at home and abroad that have realized the deployment and execution of MapReduce tasks 
on Serverless platforms and achieved certain results. For example, Serverless computing services such 
as AWS Lambda are widely used for the execution of MapReduce tasks [5]. And researchers have 
proposed different architectures and optimization strategies, e.g., Shweta Das successfully optimized 
task scheduling in serverless computing by combining the ACO algorithm with MapReduce [6]. Fabian 
Mahling introduced the BabelMR data processing framework, which provides MapReduce 
programming model to arbitrary containerized applications on serverless cloud infrastructure to improve 
the performance and scalability of MapReduce tasks on Serverless platforms [7]. Sebastian Werner's 
approach to big data processing through serverless computing, using matrix multiplication as an example, 
reduces costs and improves performance and scalability, providing advantages over traditional cluster 
computing frameworks [8]. However, MapReduce research based on Serverless platform still faces 
many challenges and pending issues [9]. Therefore, the design, implementation and optimization of 
MapReduce frameworks in Serverless environment are still of great research significance. In this study, 
we explore the reasons for the influence of MapReduce efficiency based on AliCloud serverless on the 
problem of counting the word frequency of words in large-scale English texts. 

2.2.  Overview of the methodology 
Unlike the traditional MapReduce framework that counts the word frequencies of words in English text, 
this study aims to design and implement a MapReduce framework based on AliCloud Serverless 
platform and explore the reasons affecting its efficiency [10]. In this paper, the framework adopts the 
classical MapReduce programming paradigm, which divides the data processing task into two key 
phases: Map and Reduce [11]. In terms of concrete implementation, the Map phase is responsible for 
receiving the original data, dividing the textual data into key-value pairs and performing word frequency 
statistics; the Reduce phase is responsible for merging and aggregating the key-value pairs outputted 
from the Map phase, and finally counting the word frequency of each word. The Reduce stage is 
responsible for merging and summarizing the key-value pairs output from the Map stage, and finally 
counting the word frequencies. By making full use of the "Function Computation FC" and "Object 
Storage OSS" functions provided by Aliyun Serverless Platform, the optimization of multi-threaded 
execution time of functions and the optimization of data loading and transmission speed are achieved. 

2.3.  Introduction to MapReduce 
Map phase and Reduce phase play a key role in the whole MapReduce framework, respectively 
responsible for the initial processing of raw data and the final summary statistics. 

2.3.1.  Map phase 
In the Map phase, the English text data uploaded by the user is first read by the Map function and the 
amount of data of the text is determined, including num_files and num_texts. according to the amount 
of data of num_files, the number of Map functions that need to be allocated is determined in order to 
carry out a multi-threaded parallel computation, and each thread processes one num_file. during the 
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parallel processing of each text file, the Map function splits and truncates the text to obtain each word, 
then iterates over each word, checks and modifies the word for formatting errors and symbol errors, then 
counts the frequency of each word's occurrence in the text and saves the results, categorized according 
to the first letter, in the word_counts list; specifically, the Map function takes each word as a key and 
the number of occurrences as a value . After completing the processing of all the text, the Map function 
generates 26 JSON files from the data that have been grouped according to the first letter in the 
word_counts list, and each file contains words that start with the same letter and their corresponding 
word frequency statistics. Finally, the Map function uploads these JSON files to a specified path through 
the AliCloud OSS API for subsequent Reduce stages. 

2.3.2.  Reduce phase 
The task of Reduce stage is to process the data from the output of Map stage to merge and count the 
word frequencies of the words. First, the Reduce function reads the 26-text data output from the Map 
function (these data are generated by the Map phase according to the classification of English initial 
letters) and determines the data volume of the texts: num_files and num_texts. based on the data volume 
of num_files, the number of Reduce functions that need to be allocated for parallel computation is 
determined. Next, the Reduce function accumulates the corresponding values of the same words in all 
folders to realize the function of word frequency statistics. After confirming that the word frequency 
counts of all files are complete, the Reduce function saves the generated word_counts as a JSON file. 
In order to improve the accessibility and persistence of the result, the Reduce function uploads the result 
file to AliCloud OSS and returns the access link of the file after successful upload. Users can obtain the 
final statistical results through the API or the AliCloud console interface, and conduct further data 
analysis and application. Through the above process, a MapReduce framework based on AliCloud 
Serverless platform is realized, which provides an efficient solution for word frequency statistics by 
utilizing dynamic resource allocation and elastic expansion characteristics. The specific process is 
shown in the following figure 1. 
 

 
Figure 1. MapReduce flowchart based on AliCloud Serverless 

2.4.  Introduction to the AliCloud Platform 
The AliCloud platform is the core component of the framework, which aims to reduce the time and cost 
of text data processing. The framework uses AliCloud Serverless platform as the infrastructure, which 
mainly includes two major parts: data storage layer and technology selection [12]. The data storage layer 
uses AliCloud OSS to store raw text data and processing results, and the data storage structure is flexibly 
designed according to the task requirements, such as organizing the storage by date, by task, etc., in 
order to better manage and organize the data. In terms of technology selection, AliCloud Functional 
Computing is chosen as the computing engine, which has the characteristics of elasticity and scalability, 
and is able to dynamically adjust the computing resources according to the task requirements, so as to 
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achieve optimal allocation and utilization of resources. Request security is achieved through AliCloud's 
RAM, which allows organizations and users to perform fine-grained privilege control of their resources 
on AliCloud to ensure resource security and compliance. Task scheduling, on the other hand, can utilize 
timed triggers or automated task scheduling services to manage the execution process and status of tasks 
to achieve automated task management and scheduling. For logging and monitoring, the monitoring and 
logging services provided by Aliyun are combined to monitor and analyze the execution status and 
performance of tasks in real time, so as to identify and solve problems in a timely manner and ensure 
the smooth execution and efficient operation of tasks. Through the reasonable configuration and 
implementation of the above technology selection and optimization strategies, an efficient and stable 
text data processing system is constructed, which is able to meet the needs of various complex data 
processing tasks, and at the same time greatly simplifies the deployment and management process of 
the system, improves the system's flexibility and scalability, and further improves the overall processing 
efficiency. 

3.  Experimental 

3.1.  Experimental setup 
The test data selected in this paper is the full text of Harry Potter and the Sorcerer's Stone, which is 
split into multiple segments and saved in a total of 10 folders, each containing 1024 txt files. In order to 
comprehensively evaluate the impact of different computational resource configurations on processing 
performance, we conducted experiments on AliCloud Serverless Functional Computing (FC) service. 
In our experiments, we used FC function execution environments with different vCPU specifications 
(0.3, 0.35, 0.5) and memory specifications (384MB, 512MB, 1024MB). These configurations are 
designed to simulate low to high resource demands to evaluate the performance of the system under 
different loads. Each experimental scenario contains both parallel and non-parallel processing to explore 
the impact of concurrent execution on processing efficiency. In particular, a configuration with a vCPU 
specification of 0.35 and a memory specification of 512MB is selected as the benchmark parameters for 
this experiment in order to make a side-by-side comparison under the same network environment. 
Moreover, in order to simulate the real data volume, we set the number of txt files as 100 and 1024 two 
kinds of txt file numbers, so as to evaluate the performance difference under different file numbers more 
precisely. In the experiments, we recorded the key performance indicators such as the execution time, 
vCPU utilization and memory utilization of the map function and reduce function under the two file 
sizes respectively. 

3.2.  Presentation of experimental results 
By comparing and analyzing these data, we are able to clearly observe the impact of different vCPU 
specifications, memory specifications, and parallel processing strategies on the system performance 
when processing the text segments of Harry Potter and the Sorcerer's Stone, and the specific data of the 
final experiment are shown in table 1 and table 2 below. 

Table 1. Parameters when num_file = 10 num_texts = 1024 
vCPU 
rating 

Memory 
Ratings 

Parallel or 
not 

vCPU 
values 

vCPU 
utilisation 

Memory 
values 

memory 
utilisation Time(ms) 

0.35 512 
yes 0.3318 94.80% 339.46 66.30% 217000 
no 0.3178 90.80% 315.39 61.60% 632000 

0.3 512 
yes 0.2576 85.85% 338.94 66.20% 281000 
no 0.2277 75.90% 315.39 61.60% 731000 

0.5 512 
yes 0.4815 96.30% 338.94 66.20% 155000 
no 0.4925 98.50% 315.39 61.60% 723000 

0.35 384 
yes 0.3294 94.10% 339.46 88.40% 220000 
no 0.3469 99.10% 315.26 82.10% 618000 
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0.5 1024 
yes 0.4925 98.50% 342.01 33.40% 153000 
no 0.4485 89.70% 316.42 30.90% 606000 

0.35 1024 
yes 0.3308 94.50% 342.02 33.40% 222000 
no 0.2657 75.90% 316.3 30.90% 770000 

0.3 384 
yes 0.2793 93.10% 326.3 85.02% 249000 
no 0.2748 91.60% 315.4 81.10% 999000 

Table 2. Parameters when num_file = 10 num_texts = 100 
vCPU 
rating 

Memory 
Ratings 

Parallel or 
not 

vCPU 
values 

vCPU 
utilisation 

Memory 
values 

memory 
utilisation Time(ms) 

0.35 512 
yes 0.3189 91.10% 90.62 17.70% 29400 
no 0.299 85.42% 64.51 12.60% 30141 

0.3 512 
yes 0.2766 92.20% 90.62 17.70% 33235 
no 0.2507 83.58% 65.54 12.80% 32256 

0.5 512 
yes 0.4443 88.85% 51.20 17.56% 17713 
no 0.3474 69.48% 65.54 12.80% 26372 

0.35 384 
yes 0.3196 91.30% 91.01 23.70% 25553 
no 0.2902 82.90% 66.05 17.20% 33151 

0.5 1024 
yes 0.4615 92.30% 96.38 9.41% 17584 
no 0.3788 75.75% 65.84 6.43% 29433 

0.35 1024 
yes 0.3232 92.35% 94.00 9.18% 27561 
no 0.2989 85.40% 68.61 6.70% 33900 

0.3 384 
yes 0.2607 86.90% 91.20 23.75% 38581 
no 0.2635 87.83% 65.66 17.10% 35606 

3.3.  Analysis of impact patterns 

3.3.1.  vCPU influence pattern 
The experimental results show that with the increase of vCPU specification, the vCPU utilization tends 
to increase in both parallel and non-parallel processing. Taking the 512MB memory specification and 
parallel processing environment as an example, when the vCPU specification is increased from 0.3 to 
0.5, the vCPU utilization increases from 85.42% to 88.85% (and from 69.48% to 75.75% under non-
parallel processing), while the execution time is shortened from 30 seconds and 141 milliseconds to 17 
seconds and 713 milliseconds. The change in usage with vCPU increase under parallel is shown in figure 
2. 

Table 1. (continued). 
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Figure 2. Change in usage with vCPU increase under parallel 

This indicates that a higher vCPU specification can handle more workloads, thus increasing the 
processing power of the system. Under parallel processing, higher vCPU specifications usually result in 
shorter execution times because multiple vCPUs can work simultaneously to accelerate task processing. 
In non-parallel processing, although vCPU utilization is lower, higher vCPU specifications also usually 
result in shorter execution times, probably because higher vCPU specifications allow faster single-
threaded processing. 

3.3.2.  Memory Impact Laws 
As can be seen from the experimental results, the memory utilization is not directly proportional to the 
size of the memory specification. In most cases, the memory utilization is relatively low, probably 
because the tasks in the experiments are not memory intensive. For example, in an environment with a 
vCPU specification of 0.35 and parallel processing, when the memory specification was increased from 
384MB to 1024MB, the execution time was shortened from 25 seconds 553 milliseconds to 27 seconds 
561 milliseconds, despite the decrease in memory utilization (from 23.70% to 9.18%) However, even if 
the memory utilization is not high, in some cases a larger memory specification still may have a positive 
impact on performance. For example, in memory-intensive tasks, a larger memory size can reduce 
performance bottlenecks caused by insufficient memory. Therefore, the choice of memory size needs to 
be weighed against the actual task requirements. The memory usage under parallel or non-parallel 
conditions is shown in figure 3. 

 
Figure 3. Memory usage under parallel or non-parallel conditions 
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3.3.3.  Laws of parallel influence 
The experimental results show that parallel processing has a significant improvement in system 
performance. With the same vCPU specification and memory specification, the execution time of tasks 
using parallel processing is generally less than that of non-parallel processing. For example, with a 
vCPU specification of 0.35 and a memory specification of 512 MB, the execution time for parallel 
processing is 29 seconds and 400 milliseconds, compared to 30 seconds and 141 milliseconds for non-
parallel processing. This result indicates that parallel processing can more fully utilize system resources 
and improve the processing speed and efficiency of tasks. The time spent in parallel or non-parallel 
conditions is shown in figure 4. 

 
Figure 4. Time spent in parallel or non-parallel conditions 

4.  Conclusion 
In this study, we design and implement a MapReduce framework based on AliCloud Serverless platform 
for the task of word frequency counting of large-scale English texts. By fully utilizing the dynamic 
resource allocation and elastic scaling characteristics of the Serverless architecture, we implemented the 
Map phase and Reduce phase, and conducted experiments to evaluate the system performance. The 
experimental results show that different computational resource configurations have a significant impact 
on system performance. As the vCPU specification increases, the processing power and execution 
efficiency of the system increase, especially in parallel processing environment. Memory specifications 
have a relatively small impact on system performance, but may still have a positive effect on 
performance in some cases. Parallel processing provides a significant improvement in system 
performance, enabling full utilization of system resources and increasing task processing speed and 
efficiency. Despite the results achieved, there are still some shortcomings in this study, such as the 
efficiency may not be high when processing very large-scale data, and further optimization is needed 
for data preprocessing and exception handling. Future research can improve the system performance by 
introducing efficient parallel computing strategies, such as dynamic task scheduling, graph computing 
and data flow computing modes, and optimizing resource scheduling in combination with machine 
learning. At the same time, optimize the error handling and fault tolerance mechanism, and establish an 
intelligent error warning and handling system through distributed logging, rollback, redundancy 
calculation, and data validation to enhance the reliability of the system. Improve the data pre-processing 
process, optimize the data cleaning, conversion and loading steps, and adopt layered storage and caching 
technology to improve data processing efficiency. In addition, the modular architecture is designed to 
combine containerization and microservice technologies to achieve flexible expansion and resource 
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management to further enhance the deployment and management efficiency of the system, so that the 
MapReduce framework based on Serverless architecture is more efficient and stable in processing large-
scale data sets. 
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