

Analysis of Aliyun-based serverless on MapReduce efficiency

Peng Wei

School of Information Engineering, Sichuan Agricultural University, Ya'an, 625000,
China

weipeng@stu.sicau.edu.cn

Abstract. In the context of the current era of big data, traditional Hadoop and cluster-based
MapReduce frameworks are unable to meet the demands of modern research. This paper presents
a MapReduce framework based on the AliCloud Serverless platform, which has been developed
with the objective of optimizing word frequency counting in large-scale English texts.
Leveraging AliCloud's dynamic resource allocation and elastic scaling, we have created an
efficient and flexible text data processing system. This paper details the design and
implementation of the Map and Reduce phases and analyses the impact of vCPU and memory
specifications, as well as parallel resource allocation on system performance. Experimental
results show that increasing vCPU specifications significantly improves processing capacity and
execution efficiency. While the impact of memory specifications is relatively minor, it can
positively influence performance in specific scenarios. Parallel processing markedly enhances
system performance. Experiments on "Harry Potter and the Sorcerer's Stone" validate the
framework's performance across various configurations. This study offers valuable insights for
the design and optimization of serverless-based MapReduce frameworks, as well as suggesting
future enhancements. These include the implementation of advanced parallel computing
strategies, improved error handling, and refined data preprocessing, which collectively aim to
boost system performance and stability.

Keywords: MapReduce framework, Serverless, AliCloud, word frequency statistics, distributed
computing.

1. Introduction
Nowadays, all kinds of data show explosive growth and the era of big data has arrived, MapReduce as
a popular parallel programming model is highly favored due to its wide application in the field of large-
scale data processing [1, 2]. However, past research has focused on traditional Hadoop and cluster-based
MapReduce frameworks, which provide effective solutions to process and analyze large-scale datasets,
but the traditional data processing paradigm is no longer able to meet the needs of researchers [3]. In
this context, Serverless architecture brings new ideas for distributed computing [4]. The emergence of
Serverless architecture provides users with the ability of dynamic resource allocation and elastic scaling,
which greatly simplifies the deployment and management of distributed computing tasks.

This study aims to explore the design, implementation and optimization of MapReduce framework
based on AliCloud Serverless platform. By fully utilizing the dynamic resource allocation and elastic
scaling characteristics of AliCloud Serverless architecture, an efficient and flexible text data processing
system is constructed to provide users with better word frequency statistics solutions. The study not only

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

56

provides a detailed description of the design and implementation of the MapReduce framework, but also
experimentally evaluates the impact of vCPU specification, memory specification, and parallel resource
configuration on the system performance, thus providing an important reference for further research and
optimization of the MapReduce framework under the Serverless platform.

2. Rationale analysis

2.1. Literature review
In recent years, MapReduce research under Serverless platform has gradually attracted attention. With
the computing resources provided by cloud service providers, researchers have started to explore how
to design and optimize MapReduce frameworks in Serverless environments to solve the performance
bottlenecks and cost problems existing in traditional MapReduce frameworks. Currently, there are some
related works at home and abroad that have realized the deployment and execution of MapReduce tasks
on Serverless platforms and achieved certain results. For example, Serverless computing services such
as AWS Lambda are widely used for the execution of MapReduce tasks [5]. And researchers have
proposed different architectures and optimization strategies, e.g., Shweta Das successfully optimized
task scheduling in serverless computing by combining the ACO algorithm with MapReduce [6]. Fabian
Mahling introduced the BabelMR data processing framework, which provides MapReduce
programming model to arbitrary containerized applications on serverless cloud infrastructure to improve
the performance and scalability of MapReduce tasks on Serverless platforms [7]. Sebastian Werner's
approach to big data processing through serverless computing, using matrix multiplication as an example,
reduces costs and improves performance and scalability, providing advantages over traditional cluster
computing frameworks [8]. However, MapReduce research based on Serverless platform still faces
many challenges and pending issues [9]. Therefore, the design, implementation and optimization of
MapReduce frameworks in Serverless environment are still of great research significance. In this study,
we explore the reasons for the influence of MapReduce efficiency based on AliCloud serverless on the
problem of counting the word frequency of words in large-scale English texts.

2.2. Overview of the methodology
Unlike the traditional MapReduce framework that counts the word frequencies of words in English text,
this study aims to design and implement a MapReduce framework based on AliCloud Serverless
platform and explore the reasons affecting its efficiency [10]. In this paper, the framework adopts the
classical MapReduce programming paradigm, which divides the data processing task into two key
phases: Map and Reduce [11]. In terms of concrete implementation, the Map phase is responsible for
receiving the original data, dividing the textual data into key-value pairs and performing word frequency
statistics; the Reduce phase is responsible for merging and aggregating the key-value pairs outputted
from the Map phase, and finally counting the word frequency of each word. The Reduce stage is
responsible for merging and summarizing the key-value pairs output from the Map stage, and finally
counting the word frequencies. By making full use of the "Function Computation FC" and "Object
Storage OSS" functions provided by Aliyun Serverless Platform, the optimization of multi-threaded
execution time of functions and the optimization of data loading and transmission speed are achieved.

2.3. Introduction to MapReduce
Map phase and Reduce phase play a key role in the whole MapReduce framework, respectively
responsible for the initial processing of raw data and the final summary statistics.

2.3.1. Map phase
In the Map phase, the English text data uploaded by the user is first read by the Map function and the
amount of data of the text is determined, including num_files and num_texts. according to the amount
of data of num_files, the number of Map functions that need to be allocated is determined in order to
carry out a multi-threaded parallel computation, and each thread processes one num_file. during the

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

57

parallel processing of each text file, the Map function splits and truncates the text to obtain each word,
then iterates over each word, checks and modifies the word for formatting errors and symbol errors, then
counts the frequency of each word's occurrence in the text and saves the results, categorized according
to the first letter, in the word_counts list; specifically, the Map function takes each word as a key and
the number of occurrences as a value . After completing the processing of all the text, the Map function
generates 26 JSON files from the data that have been grouped according to the first letter in the
word_counts list, and each file contains words that start with the same letter and their corresponding
word frequency statistics. Finally, the Map function uploads these JSON files to a specified path through
the AliCloud OSS API for subsequent Reduce stages.

2.3.2. Reduce phase
The task of Reduce stage is to process the data from the output of Map stage to merge and count the
word frequencies of the words. First, the Reduce function reads the 26-text data output from the Map
function (these data are generated by the Map phase according to the classification of English initial
letters) and determines the data volume of the texts: num_files and num_texts. based on the data volume
of num_files, the number of Reduce functions that need to be allocated for parallel computation is
determined. Next, the Reduce function accumulates the corresponding values of the same words in all
folders to realize the function of word frequency statistics. After confirming that the word frequency
counts of all files are complete, the Reduce function saves the generated word_counts as a JSON file.
In order to improve the accessibility and persistence of the result, the Reduce function uploads the result
file to AliCloud OSS and returns the access link of the file after successful upload. Users can obtain the
final statistical results through the API or the AliCloud console interface, and conduct further data
analysis and application. Through the above process, a MapReduce framework based on AliCloud
Serverless platform is realized, which provides an efficient solution for word frequency statistics by
utilizing dynamic resource allocation and elastic expansion characteristics. The specific process is
shown in the following figure 1.

Figure 1. MapReduce flowchart based on AliCloud Serverless

2.4. Introduction to the AliCloud Platform
The AliCloud platform is the core component of the framework, which aims to reduce the time and cost
of text data processing. The framework uses AliCloud Serverless platform as the infrastructure, which
mainly includes two major parts: data storage layer and technology selection [12]. The data storage layer
uses AliCloud OSS to store raw text data and processing results, and the data storage structure is flexibly
designed according to the task requirements, such as organizing the storage by date, by task, etc., in
order to better manage and organize the data. In terms of technology selection, AliCloud Functional
Computing is chosen as the computing engine, which has the characteristics of elasticity and scalability,
and is able to dynamically adjust the computing resources according to the task requirements, so as to

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

58

achieve optimal allocation and utilization of resources. Request security is achieved through AliCloud's
RAM, which allows organizations and users to perform fine-grained privilege control of their resources
on AliCloud to ensure resource security and compliance. Task scheduling, on the other hand, can utilize
timed triggers or automated task scheduling services to manage the execution process and status of tasks
to achieve automated task management and scheduling. For logging and monitoring, the monitoring and
logging services provided by Aliyun are combined to monitor and analyze the execution status and
performance of tasks in real time, so as to identify and solve problems in a timely manner and ensure
the smooth execution and efficient operation of tasks. Through the reasonable configuration and
implementation of the above technology selection and optimization strategies, an efficient and stable
text data processing system is constructed, which is able to meet the needs of various complex data
processing tasks, and at the same time greatly simplifies the deployment and management process of
the system, improves the system's flexibility and scalability, and further improves the overall processing
efficiency.

3. Experimental

3.1. Experimental setup
The test data selected in this paper is the full text of Harry Potter and the Sorcerer's Stone, which is
split into multiple segments and saved in a total of 10 folders, each containing 1024 txt files. In order to
comprehensively evaluate the impact of different computational resource configurations on processing
performance, we conducted experiments on AliCloud Serverless Functional Computing (FC) service.
In our experiments, we used FC function execution environments with different vCPU specifications
(0.3, 0.35, 0.5) and memory specifications (384MB, 512MB, 1024MB). These configurations are
designed to simulate low to high resource demands to evaluate the performance of the system under
different loads. Each experimental scenario contains both parallel and non-parallel processing to explore
the impact of concurrent execution on processing efficiency. In particular, a configuration with a vCPU
specification of 0.35 and a memory specification of 512MB is selected as the benchmark parameters for
this experiment in order to make a side-by-side comparison under the same network environment.
Moreover, in order to simulate the real data volume, we set the number of txt files as 100 and 1024 two
kinds of txt file numbers, so as to evaluate the performance difference under different file numbers more
precisely. In the experiments, we recorded the key performance indicators such as the execution time,
vCPU utilization and memory utilization of the map function and reduce function under the two file
sizes respectively.

3.2. Presentation of experimental results
By comparing and analyzing these data, we are able to clearly observe the impact of different vCPU
specifications, memory specifications, and parallel processing strategies on the system performance
when processing the text segments of Harry Potter and the Sorcerer's Stone, and the specific data of the
final experiment are shown in table 1 and table 2 below.

Table 1. Parameters when num_file = 10 num_texts = 1024
vCPU
rating

Memory
Ratings

Parallel or
not

vCPU
values

vCPU
utilisation

Memory
values

memory
utilisation Time(ms)

0.35 512
yes 0.3318 94.80% 339.46 66.30% 217000
no 0.3178 90.80% 315.39 61.60% 632000

0.3 512
yes 0.2576 85.85% 338.94 66.20% 281000
no 0.2277 75.90% 315.39 61.60% 731000

0.5 512
yes 0.4815 96.30% 338.94 66.20% 155000
no 0.4925 98.50% 315.39 61.60% 723000

0.35 384
yes 0.3294 94.10% 339.46 88.40% 220000
no 0.3469 99.10% 315.26 82.10% 618000

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

59

0.5 1024
yes 0.4925 98.50% 342.01 33.40% 153000
no 0.4485 89.70% 316.42 30.90% 606000

0.35 1024
yes 0.3308 94.50% 342.02 33.40% 222000
no 0.2657 75.90% 316.3 30.90% 770000

0.3 384
yes 0.2793 93.10% 326.3 85.02% 249000
no 0.2748 91.60% 315.4 81.10% 999000

Table 2. Parameters when num_file = 10 num_texts = 100
vCPU
rating

Memory
Ratings

Parallel or
not

vCPU
values

vCPU
utilisation

Memory
values

memory
utilisation Time(ms)

0.35 512
yes 0.3189 91.10% 90.62 17.70% 29400
no 0.299 85.42% 64.51 12.60% 30141

0.3 512
yes 0.2766 92.20% 90.62 17.70% 33235
no 0.2507 83.58% 65.54 12.80% 32256

0.5 512
yes 0.4443 88.85% 51.20 17.56% 17713
no 0.3474 69.48% 65.54 12.80% 26372

0.35 384
yes 0.3196 91.30% 91.01 23.70% 25553
no 0.2902 82.90% 66.05 17.20% 33151

0.5 1024
yes 0.4615 92.30% 96.38 9.41% 17584
no 0.3788 75.75% 65.84 6.43% 29433

0.35 1024
yes 0.3232 92.35% 94.00 9.18% 27561
no 0.2989 85.40% 68.61 6.70% 33900

0.3 384
yes 0.2607 86.90% 91.20 23.75% 38581
no 0.2635 87.83% 65.66 17.10% 35606

3.3. Analysis of impact patterns

3.3.1. vCPU influence pattern
The experimental results show that with the increase of vCPU specification, the vCPU utilization tends
to increase in both parallel and non-parallel processing. Taking the 512MB memory specification and
parallel processing environment as an example, when the vCPU specification is increased from 0.3 to
0.5, the vCPU utilization increases from 85.42% to 88.85% (and from 69.48% to 75.75% under non-
parallel processing), while the execution time is shortened from 30 seconds and 141 milliseconds to 17
seconds and 713 milliseconds. The change in usage with vCPU increase under parallel is shown in figure
2.

Table 1. (continued).

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

60

Figure 2. Change in usage with vCPU increase under parallel

This indicates that a higher vCPU specification can handle more workloads, thus increasing the
processing power of the system. Under parallel processing, higher vCPU specifications usually result in
shorter execution times because multiple vCPUs can work simultaneously to accelerate task processing.
In non-parallel processing, although vCPU utilization is lower, higher vCPU specifications also usually
result in shorter execution times, probably because higher vCPU specifications allow faster single-
threaded processing.

3.3.2. Memory Impact Laws
As can be seen from the experimental results, the memory utilization is not directly proportional to the
size of the memory specification. In most cases, the memory utilization is relatively low, probably
because the tasks in the experiments are not memory intensive. For example, in an environment with a
vCPU specification of 0.35 and parallel processing, when the memory specification was increased from
384MB to 1024MB, the execution time was shortened from 25 seconds 553 milliseconds to 27 seconds
561 milliseconds, despite the decrease in memory utilization (from 23.70% to 9.18%) However, even if
the memory utilization is not high, in some cases a larger memory specification still may have a positive
impact on performance. For example, in memory-intensive tasks, a larger memory size can reduce
performance bottlenecks caused by insufficient memory. Therefore, the choice of memory size needs to
be weighed against the actual task requirements. The memory usage under parallel or non-parallel
conditions is shown in figure 3.

Figure 3. Memory usage under parallel or non-parallel conditions

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

61

3.3.3. Laws of parallel influence
The experimental results show that parallel processing has a significant improvement in system
performance. With the same vCPU specification and memory specification, the execution time of tasks
using parallel processing is generally less than that of non-parallel processing. For example, with a
vCPU specification of 0.35 and a memory specification of 512 MB, the execution time for parallel
processing is 29 seconds and 400 milliseconds, compared to 30 seconds and 141 milliseconds for non-
parallel processing. This result indicates that parallel processing can more fully utilize system resources
and improve the processing speed and efficiency of tasks. The time spent in parallel or non-parallel
conditions is shown in figure 4.

Figure 4. Time spent in parallel or non-parallel conditions

4. Conclusion
In this study, we design and implement a MapReduce framework based on AliCloud Serverless platform
for the task of word frequency counting of large-scale English texts. By fully utilizing the dynamic
resource allocation and elastic scaling characteristics of the Serverless architecture, we implemented the
Map phase and Reduce phase, and conducted experiments to evaluate the system performance. The
experimental results show that different computational resource configurations have a significant impact
on system performance. As the vCPU specification increases, the processing power and execution
efficiency of the system increase, especially in parallel processing environment. Memory specifications
have a relatively small impact on system performance, but may still have a positive effect on
performance in some cases. Parallel processing provides a significant improvement in system
performance, enabling full utilization of system resources and increasing task processing speed and
efficiency. Despite the results achieved, there are still some shortcomings in this study, such as the
efficiency may not be high when processing very large-scale data, and further optimization is needed
for data preprocessing and exception handling. Future research can improve the system performance by
introducing efficient parallel computing strategies, such as dynamic task scheduling, graph computing
and data flow computing modes, and optimizing resource scheduling in combination with machine
learning. At the same time, optimize the error handling and fault tolerance mechanism, and establish an
intelligent error warning and handling system through distributed logging, rollback, redundancy
calculation, and data validation to enhance the reliability of the system. Improve the data pre-processing
process, optimize the data cleaning, conversion and loading steps, and adopt layered storage and caching
technology to improve data processing efficiency. In addition, the modular architecture is designed to
combine containerization and microservice technologies to achieve flexible expansion and resource

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

62

management to further enhance the deployment and management efficiency of the system, so that the
MapReduce framework based on Serverless architecture is more efficient and stable in processing large-
scale data sets.

References
[1] Kudyba S, Kudyba S. Big data, mining, and analytics. Boca Raton: Auerbach Publications; 2014.
[2] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications

of the ACM. 2008 Jan 1; 51(1): 107-13.
[3] Ghazi MR, Gangodkar D. Hadoop, MapReduce and HDFS: a developers perspective. Procedia

Computer Science. 2015 Jan 1; 48: 45-50.
[4] Castro P, Ishakian V, Muthusamy V, Slominski A. Serverless programming (function as a service).

In2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS) 2017
Jun 5 (pp. 2658-2659). IEEE.

[5] Giménez-Alventosa V, Moltó G, Caballer M. A framework and a performance assessment for
serverless MapReduce on AWS Lambda. Future Generation Computer Systems. 2019 Aug 1;
97: 259-74.

[6] Das S. Ant Colony Optimization for MapReduce Application to Optimise Task Scheduling in
Serverless Platform (Doctoral dissertation, Dublin, National College of Ireland).

[7] Mahling F, Rößler P, Bodner T, Rabl T. BabelMR: A Polyglot Framework for Serverless
MapReduce.

[8] Giménez-Alventosa V, Moltó G, Caballer M. A framework and a performance assessment for
serverless MapReduce on AWS Lambda. Future Generation Computer Systems. 2019 Aug 1;
97: 259-74.

[9] Grolinger K, Hayes M, Higashino WA, L'Heureux A, Allison DS, Capretz MA. Challenges for
mapreduce in big data. In2014 IEEE world congress on services 2014 Jun 27 (pp. 182-189).
IEEE.

[10] Kong Ruiping. Statistics and sorting of word frequency based on Hadoop and MapReduce.
Computer Programming Skills and Maintenance, 2024, (02): 15-17.

[11] Hashem IA, Anuar NB, Gani A, Yaqoob I, Xia F, Khan SU. MapReduce: Review and open
challenges. Scientometrics. 2016 Oct; 109: 389-422.

[12] Baidu, Alibaba Cloud. https://www.aliyun.com/, 2024.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/88/20241499

63

