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Abstract. A real-time data warehouse is a crucial tool for information management and analysis, 
enabling the capture, processing, and analysis of vast amounts of data from diverse sources in 
real-time. It offers enterprises enhanced decision support through its efficient processing 
capabilities and timely data feedback. This paper reviews the technical characteristics and 
application scenarios of real-time data warehouses, with a particular focus on the Internet sector. 
It explores the evolution from traditional data warehouses to modern data lake and lakehouse 
architectures, emphasizing the advancements in data processing capabilities, including the 
separation of storage and compute functions. Real-time data warehouses, which enable 
immediate data processing and feedback, are essential for enterprises requiring up-to-the-minute 
insights. The study compares the Lambda and Kappa architectures, detailing their strengths and 
weaknesses in terms of data throughput, latency, and scalability. Innovations such as Apache 
Hudi and lakehouse architectures offer new opportunities for performance optimization and 
functional expansion. The emergence of hybrid architectures like HTAP (Hybrid 
Transactional/Analytical Processing) and HSAP (Hybrid Serving/Analytical Processing) 
represents a significant advancement in integrating transactional and analytical processing. 
Future research should focus on the impact of artificial intelligence and machine learning on 
real-time data warehouses to enhance their analytical and predictive capabilities, reduce 
complexity, and lower operational costs. 

Keywords: Real-time data warehouse, Lambda architecture, Kappa architecture, Lakehouse 
architecture, Hybrid Serving and Analytical Processing. 

1.  Introduction 
A real-time data warehouse updates and queries indices in real-time or near real-time. Real-time data 
acquisition enables enterprises to quickly comprehend current business conditions and trends, allowing 
for timely decisions and adjustments [1]. For instance, traditional data warehouses typically operate on 
a T+1 basis, meaning that data collected today is processed and available for analysis the following day. 
This delay is no longer sufficient for organizations that require instant data processing. As a result, real-
time data warehouse architectures have been developed to provide immediate data processing 
capabilities, allowing businesses to access and analyze data as soon as it is collected. In Internet 
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companies, operations are generally divided into two broad categories: offline and real-time tasks. Real-
time tasks require higher data precision and have lower fault tolerance compared to offline tasks. 
Constructing a real-time data warehouse often involves significant real-time computation and storage 
efforts to facilitate the ETL (Extract, Transform, Load) processes [2].  

The current big data computing mode is mainly divided into batch computing (also known as offline 
computing) and stream computing (also known as real-time computing), interactive computing, graph 
computing, etc. Among them, stream computing and batch computing are the two main big data 
computing modes, which are respectively suitable for different big data application scenarios. Table 1 
illustrates the key differences between batch processing and stream processing: 

Table 1. The key differences between batch processing and stream processing 

 Batch processing Stream processing 
Data timeliness Non-real-time, high latency Real-time, low latency 
Data 
characteristics Generally static data Generally dynamic and boundary-free 

Application 
scenario 

It is used in the scenario of low 
real-time requirement and offline 
calculation, data analysis 

Real-time scenarios, such as real-time 
recommendation and service monitoring, 
require high timeliness 

Mode of 
operation Completed once Continuous task execution (7 * 24) 

 
Online Analytical Processing (OLAP) is a crucial element of real-time data warehousing. OLAP is a 

technique that enables quick and flexible analysis of multi-dimensional data. By organizing data into a 
multidimensional model, OLAP facilitates complex queries and analytical operations like slicing, dicing, 
drilling, and pivoting. With the support of OLAP technology, real-time data warehouse provides real-
time, flexible and high-performance multi-dimensional analysis capabilities to help decision makers 
gain insight into business dynamics and make more accurate decisions. 

 
Figure 1. Classification of OLAP (Online Analytical Processing) 

The Figure 1 outlines the OLAP classification, with ROLAP (Relational OLAP) and 
MOLAP(Multidimensional OLAP) being the two main subcategories. In addition, it illustrates a set of 
complementary technologies, such as SQL on Hadoop, Kylin, Druid, etc., that make up the broader 
OLAP ecosystem. 

This article reviews different types of real-time data warehouses and their advantages and 
disadvantages across various industries, with a particular focus on the Internet industry, including 
companies like ByteDance, Alibaba and Huawei. It also discusses the selection and construction of new 
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real-time data warehouses, examining specific use cases and challenges faced by these industry leaders. 
Our goal is to provide Internet-based companies with valuable insights into the implementation and 
effectiveness of real-time data warehousing. 

2.  Industry Applications 
In the realm of real-time data warehouses, the traditional architecture is chiefly categorized into two 
models: Lambda and Kappa. Each model offers a unique approach to handling real-time and offline data, 
which are foundational in defining the technology selections in this field. 

2.1.  Lambda architecture 

2.1.1.  Overview of Lambda Architecture. The Lambda architecture, introduced by Nathan Marz.the 
founder of Apache Storm, is a robust data processing framework designed to handle massive quantities 
of data by dividing it into two distinct paths: real-time and batch processing[3]. Use a streaming 
computing engine (such as Flink) for real-time data and a batch computing engine (such as Spark) for 
offline data. The results are then stored separately on different storage engines to provide external data 
services that combine streaming and batch processing to process large-scale data. The architecture 
delivers accurate data through batch processing while leveraging streaming for low latency, striking a 
balance between latency, throughput, and fault tolerance. The two processing results are combined to 
support subsequent Ad-hoc query requirements. 

2.1.2.  Components of Lambda Architecture 

 
Figure 2. Example of the Lambda Architecture 

Figure 2 presents an example of the Lambda architecture that combines both batch and stream 
processing to provide low-latency responses. The Lambda architecture consists of three main layers: 
First, batch computation engines, such as Apache Spark, are employed for processing offline data in the 
batch layer, which manages large volumes of historical data to produce comprehensive and accurate 
results. Second, streaming computation engines like Apache Flink handle real-time data, enabling quick 
decision-making and real-time analytics by processing data as it arrives. Third, the serving layer 
integrates outputs from both the real-time and batch processing layers, providing access to both 
historical insights and real-time data analytics. This integration is essential for applications that require 
ad-hoc querying capabilities for immediate and historical data analysis [4]. 

Also, maintaining data consistency between the real-time and batch layers is a significant challenge 
in this architecture. The batch layer often needs to correct or update discrepancies found in real-time 
data to ensure overall consistency. Additionally, the architecture's dual processing nature introduces 
complexity, making it challenging to implement and maintain. This complexity arises from the need to 
synchronize between different systems, which can increase resource requirements and complicate 
system management and troubleshooting. 
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2.2.  Kappa Architecture 

2.2.1.  Components of Kappa Architecture. In contrast, the Kappa architecture simplifies the data 
processing landscape by treating all data as streaming data, processed by a unified streaming computing 
engine. This approach reduces architectural complexity but demands that all data must be handled in 
real-time; offline data must also be converted into streaming data for processing. While this model 
simplifies the processing pipeline, it places stringent requirements on data timeliness[5]. 

The specific architecture can be viewed in combination with Figure 3.  

 
Figure 3. Example of the Kappa Architecture[6] 

2.2.2.  Compare with Lambda Architecture. The Kappa architecture represents a significant 
advancement in big data technologies by focusing solely on stream processing, thereby simplifying the 
data processing workflow. By treating all data as a continuous stream, Kappa architecture reduces 
system complexity and enhances the efficiency of real-time data processing. This unified approach 
makes data management and maintenance more straightforward. However, compared to the Lambda 
architecture, Kappa may face challenges in handling historical data and data replay. This highlights areas 
where further improvements could be made to enhance the architecture’s comprehensiveness and 
flexibility for various application scenarios. Table 2 clearly outlines the differences between the Lambda 
and Kappa architectures: 

Table 2. Comparison of Lambda Architecture and Kappa Architecture 

 Lambda Kappa 

Consumption Batch and stream processing simultaneously, 
high resource consumption 

Only stream processing, low 
resource consumption 

throughput Batch reprocessing, high throughput Stream reprocessing, relatively 
low throughput 

Maintenance Requires two sets of codes, harder to develop 
and test[6] 

Requires one set of code, easier to 
develop and test 

Operational 
Costs 

Maintenance of two systems, high 
operational costs 

Maintenance of one system, 
relatively lower operational costs 

2.3.  Data Lake Architecture (2011) 

2.3.1.  Overview of Data Lake Architecture. With the rise of big data, enterprises face increasing data 
volume and diversity. To effectively leverage these data resources, data lakes have emerged as a new 
data storage and management architecture. The data lake concept was first proposed by James Dixon in 
2011, who believed traditional data warehouses and marts lead to data silos, while the open and flexible 
nature of data lakes can help resolve this issue[7]. Centered around raw data, they adopt a unified storage 
and access mechanism, supporting diverse formats and types, providing enterprises a unified data 
platform. The core concepts, architectures, and applications of data lakes will be explored in the 
following sections, to help enterprises better understand and apply this technology to optimize data 
resource utilization. 
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2.3.2.  Components of Data Lake 

 
Figure 4. Example Data Lake System[7] 

Figure 4 illustrates a typical data lake system architecture, which functions as a centralized repository 
for storing large volumes of raw data in its native format. The architecture encompasses several key 
components: Data Sources and Ingestion involve integrating various data formats such as JSON, CSV, 
and Parquet from different systems through both batch and real-time streaming processes; Data Lake 
and Storage centers on a distributed storage system designed to handle vast amounts of structured, semi-
structured, and unstructured data efficiently; Data Cleaning and Versioning ensure data quality by 
removing noise, handling missing values, and standardizing formats, while managing different versions 
to support data governance and traceability; and Discovery, Integration, and Unified Data Model focus 
on exploring relationships between data sources and integrating them into a unified model, enhancing 
the efficiency and accuracy of data analysis by providing a consistent representation of data from diverse 
sources. 

2.3.3.  Example of Data Lakes: Apache Hudi (2016). Apache Hudi is a transactional data lake platform 
that enhances the power of a data lake by combining features commonly found in databases and data 
warehouses[8]. It introduces a modern approach to data processing, replacing traditional batch 
processing with an efficient incremental processing framework. The framework enables near-real-time 
analysis with low latency, allowing for minute-level analysis. Table 3 outlines the primary differences 
between Apache Hudi and traditional data warehouses 

Table 3. Comparison of Apache Hudi and Traditional Data Warehouse 

 Apache Hudi(Data Lakes) Traditional Data Warehouse 

Data 
Storage 

Stores large amounts of structured, semi-structured, 
and unstructured data without prior formatting or 
schema definition 

Primarily stores structured 
data, requiring predefined data 
schemas 

Flexibility 
Avoids the limitations of needing predefined data 
schemas, supports fast ingestion of new data sources 
and changing data requirements over time 

Requires predefined data 
schemas, less flexible with 
changing data requirements 

Cost 
Using open source Hadoop and cloud storage 
technologies, big data can be stored and managed at 
lower cost 

Higher construction and 
operation costs 

Advanced 
Analytics 

Provides raw data sources for advanced analytics 
such as machine learning and deep learning, which 
require rich data sources 

Supports basic reporting and 
analytics but not as supportive 
of advanced analytics as data 
lakes 
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The primary challenge with data lake architecture is the lack of oversight in managing and storing 
raw data. For a data lake to be effective, it needs well-defined mechanisms for cataloging and 
safeguarding data. Without these mechanisms, data can become difficult to locate and trust, leading to 
a "data swamp" scenario where data is neither usable nor reliable. Although the open and flexible nature 
of data lakes helps in breaking down data silos, it also introduces the risk of unchecked data 
accumulation. This lack of proper data management and quality control can undermine the data lake's 
purpose of enabling efficient data utilization. To ensure that data lake initiatives are successful and 
deliver their intended benefits, enterprises must implement robust governance frameworks, ensure 
semantic consistency, and establish effective access control measures. 

2.4.  Data Lakehouse(2020) 

2.4.1.  Overview of Data Lakehouse. In 2020, the company Databricks first introduced the concept of 
the Data Lakehouse, aiming to integrate data lake and data warehouse technologies into a unified 
solution. The Data Lakehouse encompasses the advantages of both data lakes and data warehouses, 
enabling data analysts and data scientists to operate on data within a single data storage environment. 
Furthermore, the Data Lakehouse model offers enhanced convenience for data governance within 
organizations. 

2.4.2.  Example of Data Lakehouse: Huawei FusionInsight . Huawei's data lakehouse solution is built 
on an integrated architecture that enables storage and computing separation[9] . This approach allows a 
single data platform to support a variety of analytical needs, from SQL-based queries to business 
intelligence (BI) and artificial intelligence (AI) applications. According to a recent study, the 
FusionInsight architecture possesses several key advantages over traditional database systems. The 
authors note that "it can process structured and unstructured data, and the data processing capacity is 
above PB-level, which is far stronger than the processing capacity of traditional database". Moreover, 
"it can simply complete the storage and operation functions by adding nodes without modifying the 
system architecture, thus reducing the operation and maintenance cost[10] ". 

 
Figure 5. Components of the FusionInsight Architecture 

Figure 5 illustrates the components of the FusionInsight architecture, which includes three key layers. 
The Data Storage Layer employs a cloud-native storage architecture that separates storage and 
computing to lower total cost of ownership (TCO). It features a unified metadata management service, 
creating a centralized data storage resource pool and supporting various analytical and computational 
tools, thus forming the foundation for lake and warehouse convergence. The Computation Engine Layer 
incorporates a transactional computation engine to enhance data lake transactional processing and 
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improve data quality. It utilizes a standard SQL access engine for unified access to cross-domain multi-
source data, supports integrated analysis and collaborative computation, and includes a fusion analytics 
and AI computation framework for machine learning model training and real-time analysis. The 
Operation Management Layer provides a unified data development and governance environment with 
robust security management, supporting task orchestration across multiple computation engines, data 
modeling, and quality monitoring. This layer ensures a consistent experience for lake and warehouse 
management, crucial for operationalizing "Lake-Warehouse Convergence." Through these 
technological innovations, the architecture effectively eliminates traditional boundaries between data 
lakes and warehouses, addressing enterprises' needs for comprehensive and efficient data processing. 

2.5.  Hybrid Transaction & Analytical processing (HTAP) 

2.5.1.  Overview of HTAP system. HTAP can be simply understood as completing OLAP and OLTP 
business tasks within a unified database system[11]. Compared to traditional TP databases, HTAP 
databases have an additional computing engine that can accelerate SQL execution efficiency. And based 
on traditional AP databases, HTAP databases also have a transaction engine that allows "write-to-read" 
and provides high data timeliness. It breaks down the wall between transaction processing and analysis, 
supporting more information and real-time business decision-making. 

2.5.2.  Components of HTAP system. HTAP databases include an efficient computing engine that 
accelerates SQL query execution and enhances analytical performance, a transaction engine based on 
traditional AP databases that provides transaction processing capabilities and "write-to-read" 
functionality for high data timeliness, and the ability to support real-time business decision-making by 
breaking down the barriers between transaction processing and analysis, eliminating the need to replicate 
data from OLTP to OLAP systems. 

2.5.3.  Example of HTAP system: ByteHTAP 

 
Figure 6. An illustration of ByteHTAP architecture[12] 

As shown in Figure 6, HTAP (Hybrid Transaction/Analytical Processing) systems like ByteHTAP are 
designed to handle both transactional (OLTP) and analytical (OLAP) workloads efficiently. ByteHTAP 
uses separate engines over shared storage, with a unified API and a smart proxy that directs queries to 
either the OLTP engine (ByteNDB) or the OLAP engine (Flink). Simple transactional queries go to the 
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OLTP engine, while complex analytical queries are handled by the OLAP engine, avoiding interference 
between workloads and ensuring optimal query processing[12]. 

2.6.  Hybrid Serving & Analytical processing (HSAP) 

2.6.1.  Overview of HSAP System. Hybrid Serving & Analytical Processing (HSAP) systems are 
designed to bridge the gap between real-time data serving and complex analytical processing. 
Traditional HTAP (Hybrid Transactional and Analytical Processing) systems excel at real-time data 
analysis but often struggle with large-scale data processing. The HSAP system builds upon the HTAP 
paradigm by integrating advanced capabilities for both transactional and analytical workloads, 
addressing the challenges of big data environments. 

2.6.2.  Example of HSAP System: Hologres by Alibaba. Hologres is a cloud-native, real-time analytical 
data warehouse launched by Alibaba Cloud, which is built upon the Apache Hudi. It provides high-
performance, scalable, and real-time data storage and analytics capabilities, supporting features such as 
cloud-native architecture, real-time data processing, high scalability, and SQL compatibility, enabling 
organizations to manage their entire data ecosystem within a unified platform. 

 
Figure 7. An Example HSAP Scenario[13] 

Figure 7 illustrates the High-Scale Analytical Processing (HSAP) architecture of the big data 
technology stack supporting a recommendation service [13]. This architecture integrates various 
components to efficiently process and analyze large-scale data in both real-time and batch modes. 
Ingestion and Aggregation involves processing data through online aggregation for immediate use in 
applications like recommendation systems, and batch aggregation for deriving features and updating 
dimension tables for longer-term analytics. Derived Features are generated from aggregated data, such 
as item clicks over different time intervals, to enhance recommendation algorithms, while Dimension 
Tables store static data about items and users, essential for joining and analyzing data from various 
sources. Real-Time Events like page views and user clicks are processed instantly for immediate 
analytics and updates, complemented by Continuous Aggregation, which performs ongoing data 
aggregation to provide up-to-date insights. Finally, Interactive Analysis enables real-time data 
exploration, and Reporting Queries support the generation of reports and dashboards for business 
intelligence insights. 

Besides, the HSAP system encounters significant challenges due to high variability in data ingestion 
and query workloads, necessitating dynamic resource allocation to sustain performance. HSAP 
architectures must handle and serve massive data volumes, processing hundreds of millions of events 
per second with stringent latency requirements that exceed traditional OLAP needs. Furthermore, HSAP 
platforms must support extremely high concurrency, with queries reaching tens of millions per second, 
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while simultaneously managing complex analytical workloads. This demands advanced resource 
management techniques to ensure efficient operation. 

3.  Conclusion 
In conclusion, this paper systematically reviews the technical characteristics of various types of real-
time data warehouses and their application scenarios across multiple industries, with a particular focus 
on the Internet sector. By deeply analyzing the considerations for selecting new real-time data 
warehouses, architectural design, and typical application cases, it provides valuable insights and 
guidance for Internet companies in technology selection and system construction related to real-time 
data warehouses. 

In terms of technical architecture, we conducted an in-depth comparison of the widely used Lambda 
and Kappa architectures, analyzing their strengths and weaknesses in key performance metrics such as 
data throughput, processing latency, and system scalability. The Lambda architecture, which combines 
batch and stream processing, offers high fault tolerance and flexibility but comes with increased 
complexity and higher latency. The Kappa architecture simplifies data processing by focusing solely on 
stream processing, yet it faces limitations in data replay and historical data handling. 

With the continuous advancement of emerging technologies, innovations such as Apache Hudi and 
the rise of lakehouse architectures present new opportunities for performance optimization and 
functional expansion of real-time data warehouses. Data lake technologies enhance data warehouses' 
processing capabilities and flexibility by providing efficient data storage and management solutions. 
Meanwhile, the lakehouse architecture integrates the advantages of data lakes and data warehouses, 
enabling more efficient data querying and analytical processing. 

In terms of hybrid architectures, the emergence of HTAP (Hybrid Transactional/Analytical 
Processing) and HSAP (Hybrid Serving/Analytical Processing) architectures has driven the deep 
integration of transactional and analytical processing. This integration not only enhances the system's 
real-time capabilities and consistency but also simplifies data management and application development 
through a unified data platform. HTAP architecture improves data consistency and real-time capabilities 
by supporting both transactional and analytical processing within a single database, while HSAP 
architecture achieves more efficient business processing and data insights by combining online serving 
with analytical processing. 

Despite these insights, this study has certain limitations. It may not thoroughly the latest 
advancements in these architectures, which offer new possibilities for performance optimization and 
functional expansion. Looking ahead, with the continuous progress of cloud computing and big data 
technologies, real-time data warehouses will further develop towards intelligence, automation, and 
integration. The deep penetration of cutting-edge technologies such as artificial intelligence and machine 
learning will endow real-time data warehouses with more powerful analytical and predictive capabilities, 
helping enterprises uncover valuable insights hidden in vast amounts of data. Intelligent data processing 
and automated operation management will significantly reduce system complexity and operational costs, 
enhancing enterprises' data-driven decision-making capabilities. 
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