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Abstract. With the development of cognitive computing and intelligent media communication, 
recognizing the user’s emotion using electroencephalography (EEG) has garnered increasing 
attention. However, building a cross-subject emotion recognition model with good 
generalization performance is really difficult. To achieve remarkable performance, a label-
refined domain adversarial neural network is designed and EEG samples are subdivided into 6 
groups according to the differences in users' brain activities under different movie stimuli. Based 
on the experiment of SEED and SEED-IV datasets, the classification accuracy of our method 
reaches 93.35±4.14% and 84.08±6.01%, achieving the state-of-the-art performance. 
Experiments show that using different movie stimuli to refine labels can achieve efficient cross-
subject emotion recognition. 
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1.  Introduction 
The development of cognitive computing and intelligent media communication has put forward higher 
requirements for the recognition of cognitive states, among which recognition of emotion and 
understanding of users' emotional states are crucial [1]. Emotion recognition technology based on EEG 
signals has become a focus of research due to its low cost, anti-forgery, and anti-coercion characteristics 
[2-3]. EEG-based emotion recognition can help media precisely understand users' emotional responses 
when watching the communication content and adjust the presentation and selection of content 
according to users' emotional states, thereby meeting users' needs more accurately. 
However, EEG signals have inter-individual differences and non-stationary characteristics, which do 
not conform to the assumption of independent and identically distributed training and testing data 
required by traditional machine learning algorithms [4]. Therefore, cross-subject EEG emotion 
recognition has been one of the challenges in the field of emotion recognition. To address this challenge, 
cross-subject emotion recognition algorithms based on transfer learning have become the mainstream 
of research in recent years [5-7]. These algorithms refer to the data of known subjects as a source domain 
and the data of unknown subjects as a target domain. The core idea is to reduce the differences between 
the source domain and the target domain, transfer the knowledge learned in the source domain to the 
target domain, and thus improve the generalization ability of the model. Unlike methods that only use 
source domain data to achieve task-related feature extraction, domain adaptation algorithms not only 
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use source domain data but also obtain data distribution from unlabeled target domain data to achieve 
knowledge transfer [8]. Although collecting target domain data may increase training time, domain 
adaptation methods have significant accuracy advantages because they obtain the data distribution of 
the target domain and have become an important algorithm in EEG emotion recognition transfer learning. 

Traditional domain adaptation algorithms usually treat target domain data as a whole category when 
processing them, and ignore the possible distribution differences between data with different labels, 
which may lead to misleading knowledge transfer. To address this problem, few-shot domain adaptation 
techniques have emerged in recent years, attempting to use a small amount of labeled target domain data 
to transfer source domain knowledge for different label types separately in the domain adaptation 
process, and improving the accuracy of domain adaptation algorithms [9-11]. Some researchers have 
combined label information and domain types, dividing the source domain and target domain data 
participating in training into multiple types, further enhancing the targeting of the knowledge transfer 
process, and achieving advanced results. 

However, research has shown that even emotional data with the same label may have large 
distribution differences. In contrast, different subjects may exhibit more similar cognitive pattern 
responses under the same movie clip stimuli [12]. This suggests that considering distinguishing different 
contexts with the same label and making more refined divisions of the target domain can improve the 
targeting of the domain adaptation process and the accuracy of cross-subject EEG emotion recognition. 
Therefore, scientifically dividing the target domain into subclasses to ensure the consistency of the data 
distribution of each subclass is crucial. 

Based on the above ideas, this paper proposes a label-refined domain adversarial neural network (LR-
DANN) for EEG emotion recognition, targeting different movie clips. According to the similarity and 
difference of the stimulus movie clips and the domain, the EEG samples participating in the training are 
subdivided into six types. In the domain adaptation process, the algorithm needs to distinguish movie 
clips while confusing domain information, thereby achieving more efficient cross-domain emotion 
representation. Experiments show that label type refinement can effectively improve the targeting of the 
domain adaptation process. 

2.  Related works 

2.1.  EEG emotion recognition 
Cognitive science research indicates a close relationship between brain electrical activity and emotions 
and cognition [13]. Based on EEG signals, researchers can extract emotion-related information to 
establish computational models of emotions, enabling the detection and recognition of different 
emotional states. Researchers can apply signal processing techniques and deep learning algorithms to 
analyze EEG signals, extract features related to emotions and cognition, thereby achieving detection of 
internal states in humans. 

As a method of audiovisual stimulation, movies and other video stimuli are widely used in emotion 
recognition research. Similar to real-life scenarios, movies and videos are rich in content, dynamically 
plotted, and highly realistic, making them ecologically valid stimuli. Consequently, an increasing 
number of emotion recognition studies are incorporating audiovisual stimuli to induce emotions. SEED 
[14] and SEED-IV [15] are publicly available EEG databases built upon audiovisual stimuli, widely 
utilized as foundations in many emotion recognition studies. 

2.2.  Domain adaption emotion recognition based on EEG 
Due to cost and efficiency issues in data collection, it is impractical to gather large-scale data from every 
user for model training in brain-machine interface systems based on physiological signals. Consequently, 
the impact of individual differences cannot be entirely avoided. When significant individual differences 
exist in participants' EEG signals, traditional machine learning algorithms often struggle to construct 
accurate cross-subject emotion recognition models. To address this challenge, the prevailing approach 
involves using domain adaptation algorithms to develop more generalized emotion recognition models. 
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The goal of these algorithms is to learn common attributes between the source and target domains and 
transfer knowledge from the source domain to tasks in the target domain. 

For instance, Zheng et al. proposed an emotion recognition model based on traditional domain 
adaptation algorithms, achieving a 20% accuracy improvement in cross-subject emotion recognition 
[16]. Wang et al. also proposed a few-label adversarial domain adaption (FLADA) method for cross-
subject EEG emotion recognition tasks. This method combines adversarial domain adaptation with deep 
adaptive transformations, achieving robust emotion recognition across subjects with small-scale EEG 
datasets containing few labels [9]. Drawing inspiration from domain adaption neural networks, this 
study refines emotion labels to handle domain ambiguity while performing emotion classification tasks 
on movie clips. This approach enables more efficient cross-domain emotion representation. 

3.  Method 

 
Figure 1. An overview of the proposed LR-DANN. 

The algorithm in this paper is divided into two stages. In the first stage, all source domains are adapted 
to the target domain one by one according to the structure shown in Figure 1. In the second stage, the 
top K performing source domains are integrated and classified to achieve cross-subject emotion 
recognition. The first stage comprises four modules: sample pair generation, encoder, domain 
discriminator, and movie classifier. The remaining part of this section will introduce each module 
sequentially. 

3.1.  Sample pair generation 
To make the domain adaptation process more targeted, the algorithm in this paper refines the labeling 
of the training data by categorizing it into N movie stimuli based on movie segments. For instance, the 
SEED dataset has 3 emotional categories, each elicited by 5 different stimulus videos, resulting in 15 
distinct movie stimulus labels. Subsequently, the training samples are categorized into 6 types based on 
the movie stimuli they belong to and the domain types they are part of. The categorization process is 
illustrated in Figure 2. 

 
Figure 2. Type division of EEG samples. 
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This paper divides the original EEG data into samples of 1-second duration each, and randomly 
selects pairs of samples from all EEG samples to form sample pairs (𝑋, 𝑋′). To distinguish the domain 
source of samples using superscripts: samples from the source domain are denoted as 𝑋!,samples from 
the target domain are denoted as 𝑋";To differentiate samples based on movie stimuli using subscripts: 
EEG samples from the n-th movie stimulus are denoted as 𝑋#.The sample pairs can be categorized into 
6 groups based on the type of movie stimulus and their domain of origin, as shown in Figure 2. 

3.2.  Encoder 
To obtain emotion-related EEG features, we compute the differential entropy (DE) across the segmented 
sample pairs (𝑋, 𝑋′) as outlined in Section 3.1. These features are utilized for cross-subject domain-
adaptive learning. We implement the methodology proposed by Shi et al. for this purpose [17]. For each 
EEG sample, we initially decompose the training dataset using Butterworth filters into 5 frequency 
bands (𝛿[0.5~4 Hz],𝜃[4~8 Hz],𝛼[8~14 Hz],𝛽[14~31 Hz] and 𝛾[31~51 Hz]) . Next, we extract DE 
features from the 5 frequency bands individually, arranging them in a one-dimensional vector in channel 
order from top to bottom. This results in five feature vectors. Subsequently, we concatenate these feature 
vectors from lower to higher frequency bands to form a one-dimensional DE feature vector denoted as 
E. We apply these operations sequentially to each EEG sample from the sample pairs(𝑋, 𝑋′) obtained in 
Section 3.1 and get DE pairs (𝐸, 𝐸′). 

We use a multi-layer perceptron (MLP) with shared parameters to process the extracted DE 
pairs(𝐸, 𝐸′) . Each MLP consists of fully connected hidden layers and an output layer. The MLP 
functions as a feature extractor, where the hidden layers act to map the raw data into a high-dimensional 
feature space. During training, parameter sharing is implemented between the two MLPs. Each neuron 
computes a weighted set of inputs, passes them through a ReLU activation function to produce nonlinear 
outputs. The final output is represented as (𝐷, 𝐷′), as depicted in Figure 3. 

 
Figure 3. The process of EEG feature representation. 

3.3.  Domain discriminator 
To confound the source and target domains and facilitate cross-subject emotional knowledge transfer, 
we designed a domain discrimination model. This model categorizes sample pairs based on EEG 
features (𝐷, 𝐷′) into 6 types (denoted as G1 to G6). We implemented a multi-class domain-category 
discriminator (DCD) for this purpose. The structure of the DCD includes two fully connected layers 
with a softmax activation function, trained using standard cross-entropy loss as shown in Equation (1).  
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In the context provided, 𝐺$ represents the type of sample pair, 𝑦%! denotes the label for 𝐺$, and P 
represents the multi-class domain-category discriminator (DCD). We continually update the MLP to 
confuse the DCD, making it unable to distinguish between source and target domain data. Specifically, 
the DCD should not distinguish between sample pair types 1, 3, and 5, nor should it distinguish between 
types 2, 4, and 6. Therefore, the DCD loss function can be transformed into Equation (2). 

  (2) 

3.4.  Movie classifier 
While confounding the source and target domains, we train a movie stimulus classifier using the EEG 
features(𝐷, 𝐷′) obtained in Section 3.2 to predict the stimuli. Training is performed using the standard 
cross-entropy loss function, with classification losses represented as Equations (3) and (4). 

  (3) 

  (4) 

In this context, 𝑦& represents the genre tag for thriller movies, C denotes the thriller movie classifier, 
and M stands for the number of segments in the movie. 

The joint adversarial training of the thriller movie classifier and multi-class domain discriminator 
involves specific steps. In the first step, freeze the encoder and the movie classifier, and train domain 
discriminator on pairs of samples from 6 categories. In the second step, freeze domain discriminator and 
train the encoder and movie classifier while maintaining high accuracy in classifying movies. Repeat 
these steps until the loss converges to a preset value. The total training loss is shown in formula (5).  

  (5) 

3.5.  Ensemble classification 
Fixing the target domain subjects, according to the domain adaptation steps described in sections 3.1 to 
3.4, adapt each of the P source domains individually to the target domain. Each source domain is trained 
with the target domain to obtain one domain adaptation model (as shown in Figure 1). In the second 
stage, we evaluate the P domain adaptation models obtained in the first stage using a few labeled target 
domain data. We select the top K models with the best prediction results to classify the target domain 
EEG data for emotion classification. 

We aggregate all predicted results using equal weights, as shown in Equation (6). 

  (6) 

Here, 𝑤  represents the equal weights of domain training models. P is the number of domain 
adaptation models and K is the number of selected domain adaptation models.𝑅& denotes the emotion 
prediction result of the i-th domain adaptation model. 

4.  Experiment 

4.1.  Dataset 
This study utilizes the publicly available SEED dataset, collected by Shanghai Jiao Tong University for 
EEG-based emotion recognition. The dataset includes data from 15 participants (7 males, 8 females). 
There are 15 movie stimuli, each consisting of a 4-minute segment from different movies, inducing 3 
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emotional categories (positive, neutral, and negative), with 5 stimuli per emotion category. The 
experiment is divided into four stages: a 5-second pre-stimulus phase, a 4-minute movie stimulus phase, 
a 45-second self-assessment phase, and a 20-second rest phase.  

The SEED-IV dataset provides EEG emotion data in 4 categories: neutral, sad, fear, and positive. 
Similar to the SEED dataset, it includes data from 15 subjects. Each subject undergoes 3 experiments, 
divided into four stages: a 5-second pre-stimulus phase, approximately 2 minutes of movie stimulus 
phase, a 45-second self-assessment phase, and a 20-second rest phase. There are 24 movie stimuli per 
experiment, with 6 stimuli corresponding to each emotional category.  

4.2.  Results 

4.2.1.  Cross-subject emotion recognition performance. To evaluate the algorithm in this study, each 
participant randomly selected one out of three experimental groups as their test data. We employed 
leave-one-subject-out cross-validation to train and test the EEG data of 15 subjects from the SEED and 
SEED-IV datasets. In each experiment, one subject was designated as the target domain, while the 
remaining 14 subjects served as the source domain. 

In this experiment, the target domain utilized very limited labeled data to classify the remaining 
unlabeled data. For the SEED dataset, 18 randomly selected labeled samples per movie stimulus were 
used as calibration data, resulting in L=90 calibration samples per emotion category. The average 
accuracy (ACC) and standard deviation (STD) for emotion classification across all participants were 
93.35% and 4.14%, respectively, as illustrated in Figure 4 (a). On the SEED-IV dataset, calibration data 
was selected in the same proportion as the SEED dataset. The model achieved an average ACC of 84.08% 
and a STD of 6.01%, as shown in Figure 4 (b). 

 
Figure 4. The performance of cross-subject emotion recognition on SEED dataset and SEED-IV dataset 

Table 1. The comparison of data-independent results between the proposed algorithm and others on 
SEED dataset and SEED-IV dataset 

Model SEED SEED-IV 
ACC (%) STD (%) ACC (%) STD (%) 

Source-only 60.27 18.89 40.50 10.05 
DANN  75.08 11.18 54.63 8.03 

R2G-STNN 84.16 7.63 - - 
MTL 88.92 10.35 - - 

MS-MDA 80.62 11.03 57.92 10.12 
TANN - - 68.00 8.35 
GMSS 76.04 11.91 62.13 11.91 

FLADA  89.32 0.86 82.91 8.35 
LR-DANN (ours) 93.35 4.14 84.08 6.01 
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To further validate the performance of the proposed algorithm in cross-subject emotion recognition, 
this study compares LR-DANN with several state-of-the-art research algorithms (DANN [18], R2G-
STNN [19], MTL [11], FLADA [9], MS-MDA [20], TANN [21], and GMSS [22]). All algorithms were 
evaluated using the same parameters, and the results are presented in Table 1. It is evident from the table 
that the proposed algorithm achieves significantly higher accuracy compared to the other algorithms 
tested.  

4.2.2.  Model evaluation based on calibration data. In transfer learning, the quantity of calibration data 
(L) in the target domain is an important parameter. Generally, a larger amount of calibration data in the 
target domain leads to better model performance. However, obtaining a substantial amount of calibration 
data can be challenging in practical applications. Therefore, it is necessary to assess the algorithm's 
performance under different values of L. This study analyzed the SEED dataset where a total calibration 
data quantity L increasing from 30 to 180. The model performance remains consistently high across 
different values of L, as shown in Figure 5 (a). 

4.2.3.  Model evaluation based on the selection number of source domains.In multi-source domain 
adaptation, the number K of participating source domains is another critical parameter. When choosing 
multiple source domains, the model can benefit from a richer diversity of domain-specific information. 
We analyzed the experimental results of LR-DANN under different numbers K of source domains, as 
shown in Figure 5 (b). As the number of source domains increases, the overall accuracy of the model 
predictions also increases. However, once the number of source domains exceeds 7, the model 
performance maintains an accuracy level of around 93%. 

 
Figure 5. Performance comparison of LR-DANN with different calibration samples and source numbers. 

5.  Conclusion 
In the process of multi-source domain adaptation in the target domain, fine-grained labeling can 
effectively enhance the specificity of domain adaptation. This study uses the variability of EEG 
responses under different movie stimuli to refine emotional labels, categorizing emotions of different 
subjects into intra-group divisions based on the specific movie stimuli. This approach fully utilizes the 
individual differences in brain activity patterns activated by different emotional stimuli. Moreover, the 
study employs ensemble classification from multiple source domains, making it easier to identify 
optimal domain parameters for the EEG data under examination, thereby achieving efficient cross-
subject EEG emotion recognition. 
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