

Refining CVE-to-CWE mapping with enhanced attention in

BERT-based models

Jingyi Su1,2, Yan Wu1,3,*

1Bowling Green State University, OH, USA

2jsu@bgsu.edu
3yanwu@bgsu.edu

*Corresponding author

Abstract. In this study, we introduce CySecBERT-ARD, an advanced approach for classifying

software vulnerabilities that maps Common Vulnerabilities and Exposures (CVE) to Common

Weakness Enumerations (CWE). Our approach is to use a pretrained transformer-based model

CySecBERT tailored for cybersecurity contexts, the model is enhanced with additive attention

and relative position encoding which allow for a deeper understanding of the vulnerability

descriptions of CVE by capturing the contextual relationships. Our approach achieves an

impressive accuracy of 91.34% and F1-score of 91.32% during the evaluation and testing phase

compared to the base models. The results demonstrate the potential of CySecBERT-ARD in

enhancing the efficiency and effectiveness of vulnerability classification.

Keywords: BERT, Transformers, Cybersecurity, Vulnerability Classification.

1. Introduction

As the eld of cybersecurity rapidly evolving, it is crucial to have accurate and timely vulnerability

classification for securing software and systems. CVE and CWE are integral to cybersecurity systems

and known vulnerabilities are published and categorized by their weaknesses. Mapping CVEs to CWEs

efficiently is beneficial for software engineers and developers to manage the vulnerabilities, since

understanding the vulnerabilities with their underlying categories and related weaknesses helps in

developing defensive strategies. Traditional methods which are mostly based on manual categorization

and rely on security experts are often time and resource costly and may fail to recognize the complexities

of some vulnerability descriptions. They are also prone to errors and lag behind the volume and evolving

nature of threats. This indicates the need for more complex automated approaches that are able to handle

large volumes of data with high accuracy and efficiency. Our model, CySecBERT-ARD, utilizes a

transformer-based architecture enhanced with additive attention, relative position encoding, and dual

pooling, achieving substantial performance improvements. With an overall F1 of 91.32%, this model

outperforms the base model and variants across different vulnerability categories showing a strong

ability to handle the complexities of CVE descriptions. The contributions of this study are:

Integration of CySecBERT [1] for Cybersecurity Texts: We utilize the pre-trained CySecBERT

model specifically for cybersecurity contexts, to generate contextual embeddings from preprocessed

CVE descriptions as input texts. This allows our model to more effectively collect the nuances of some

of the keyword meanings and their relationships with each other in the dataset about cybersecurity data.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/71/20241647

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

107

Dual Pooling with Attention Mechanism: Our model contains a dual pooling layer, which is a

combination of average pooling and maximum pooling operations. We employ this mechanism to try to

extract overall feature activations and peak feature activations, thus improving the robustness and

accuracy of extracted features in the classification task. We incorporate an additive attention mechanism

in the model for dynamically prioritizing important text features. Using this attention mechanism in

conjunction with relative positional coding can be more helpful in drawing out positional relationships

in CVE descriptions, and such attempts lead to more accurate CWE classification in terms of CVE

descriptions alone.

Comprehensive Classification Framework: Our model is structured to include multiple high-level

layers, such as a step-by-step approach to learn the word meanings of CVE descriptions more deeply

using BERT embedding, relative position encoding, additive attention, and double pooling.

This structure improves the original model's ability to categorize different CVE descriptions into

appropriate CWE categories with higher accuracy and reliability during the experiments. These

innovations enhance the performance of our model for CVE and CWE categorization, with significant

improvements over the base model and other similar variants of the model, ensuring efficiency and

effectiveness in handling complex CVE and CWE data.

2. Background

As more software is developed and utilized, the vulnerabilities represent significant threats to modern

information systems, as cyber attackers can make use of the weaknesses to access and modify sensitive

data. They can also take control of devices and spread malware which leads the users' system to be more

vulnerable and exposed to dangerous environments. The attackers are able to reach other hosts within

the same network just by accessing one node [2]. Attackers can also use these hosts with weaknesses to

do malicious activities, increasing the overall impact of the initial vulnerability [3].

To make these threats less intimidating, the National Vulnerability Database (NVD) was launched

in 2004, the world's most comprehensive repository of publicly disclosed vulnerabilities in commercial

and open-source software and enhances the CVE list previously developed by the nonprofit MITRE

Corporation in 1999. While the NVD and CVE are closely related and often used interchangeably, the

NVD adds important analytics and metadata to CVE entries, providing a more detailed resource for

understanding vulnerabilities. Each CVE entry includes a unique identifier, a detailed description, and

public references, covering affected products, vendors, impacts, access required for exploitation, and

compromised code components [4]. This extensive information makes the NVD a valuable resource for

cybersecurity professionals [5].

Complementing the CVE system, CWE further categorizes the types of software vulnerabilities by

using them as root causes that can be referenced and queried to focus on security issues. This system

quickly began to help developers and security professionals to easily understand, learn, and use to try to

address potential weaknesses in their systems. By identifying common patterns of flaws, the CWE

facilitates the development of preventive measures against widespread vulnerabilities [6]. This

categorization also aids in prioritizing security efforts and resources more effectively [7].

Since CVEs and CWEs play an important role in cybersecurity, our research is directed toward

building models to accurately categorize CVE textual descriptions into the correct CWE categories,

which are essential for accurately locating and mitigating security risks in software systems.

As mentioned in the previous section, this task is crucial for accurately locating and mitigating

security risks in software systems. By learning and extracting the known vulnerabilities found in the

software components in the CVE details, they are categorized into CWEs as broader vulnerability

categories. Understanding this classification is vital for devising effective security strategies and

enhancing the resilience of systems against potential attack s [8]. This classification also assists in the

development of targeted mitigation strategies to address specific types of vulnerabilities [9].

Initially, CVE to CWE classification was conducted manually by cybersecurity experts who

meticulously reviewed vulnerability reports and mapped them to CWE identifiers using their expert

knowledge and established criteria [10]. While this method ensured high accuracy, it proved unscalable

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/71/20241647

108

with the increasing volume of vulnerabilities. Basic NLP techniques have also been leveraged in

traditional classification approaches. Kanakogi et al. (2021) utilized TF-IDF and Doc2Vec to identify

CAPEC attack patterns from CVE descriptions [11], enabling automated mapping of vulnerabilities to

attack patterns and improving classification accuracy. Recent advancements have introduced

sophisticated techniques like V2W-BERT, a Transformer-based learning frame- work that integrates

natural language processing, link prediction, and transfer learning [12]. This framework outperforms

previous methods, showcasing the potential of advanced machine learning techniques in cybersecurity.

3. Methodology

This section describes our approach to building the model and running the model data preparation

methodology, the model architecture and flow, and the effects of using the model and categorizing CVEs

as CWEs if experiments are conducted and evaluated.

3.1. Data Acquisition and Representation

In our prep work, we used data collected from MITRE and NVD, a dataset that spans from 2002 to 2021

according to the data description. It contains rich information about publicly disclosed cybersecurity

vulnerabilities and their categorization, and we adopted the software development view to categorize

vulnerabilities around concepts frequently encountered in software development as an initial attempt at

modeling. To ensure the reliability and relevance of the dataset, we decided to focus our categorization

on the most prevalent CWEs (top 50), especially those CWE categories with more than 100 CVEs. This

approach highlights the common vulnerabilities and improves the generalization ability of the model.

We divided the data into training, evaluation, and test sets in a ratio of 7:1.5:1.5 (the number of data

entries for train, eval and test: 38547, 8238, 8314) and maintained an even distribution of CWEs across

these sets in a randomized grouping approach to ensure a balanced assessment of model performance

with no missing CWEs.

3.2. Data Preprocessing

Our preprocessing pipeline enhances the model's ability to interpret general as well as security-related

texts with greater accuracy.

3.2.1. Text Normalization and Cleaning

Initial text preprocessing involves several operations:

• Normalization and Contraction Expansion: For uniformity, we standardize tokenized text input by

converting all textual vocabulary to lowercase, and acronyms are expanded to their full form to

reduce lexical ambiguity.

• Tokenization and Lemmatization: We used the Natural Language Toolkit (NLTK) to tokenize text

into individual words and lemmatize each token into its base form. This step simplifies the language

and focuses on the core meaning of the words.

• Removal of Non-Informative Text: We also removed non-alphabetic characters and numbers and

stripped out URLs to focus on plain text information. In addition, our approach includes the removal

of stop words of low semantic value, allowing us to focus on more meaningful content that is more

relevant to software security.

• Handling of Rare Categories: We also set up the option to filter out infrequent CWEs (when there

are less than 100 relevant CVEs) in order to focus training on more and more supported data points.

3.2.2. Validation and Error Handling

We ensure the validity and reliability of the data through:

• Validation Checks: We perform checks for invalid entries, such as CVSS scores outside the

acceptable range or incorrectly formatted entries, to maintain data quality for training.

Proceedings of the 6th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/71/20241647

109

• Logging and Documentation: Detailed logs are kept throughout the preprocessing steps to document

data transformations, errors, and dropped rows, providing transparency and traceability.

• Removal of Duplicates and CVEs with Missing Description: Further checks for duplicates are done

before sending the preprocessed data into models. These methods of preprocessing improve the

quality and consistency of the data fed into the model, greatly affecting the effectiveness and

efficiency of subsequent classification tasks.

During the data preprocessing phase, we cleaned and rearranged the original data with very satisfying

results that contributed to all the models we evaluated.

3.3. Transformer-Based Model Architecture

In this section, we present the architecture of the transformer-based model CySecBERT-APR, which,

as mentioned earlier, incorporates advanced features such as additive attention, relative position

encoding, and dual pooling to enhance the processing of cybersecurity texts and to ensure improved

model performance in the task of classifying CVEs.

• BERT Embeddings: We first generate contextual embeddings from the input text using a pre-trained

BERT model (CySecBERT which is further pretrained on CVE descriptions) that captures the

differences in word meanings in the CVE descriptions and their relationships in the cybersecurity

context.

• Relative Position Coding: We also use sinusoidal coding to supplement the relative position

information of the embeddings, which helps us understand the order-dependent features of the

language in the CVE descriptions.

• Additive Attention: Our model applies an additive attention mechanism after embedding to pay more

attention to the relevant parts of the text and uses a trainable scoring system to prioritize critical

information for classification.

• Dual Pooling: Based on the attentional mechanism, we use the dual pooling technique, where we

combine average pooling and maximum pooling to capture overall feature activations and peak

feature activations in this layer to enhance the robustness of extracted features.

• Classifier: The final feature set is passed through a culling layer for regularization and a linear layer

for classifying features into CWE categories.

3.4. Training Protocol and Hyperparameter Optimization

Our model is trained in batches of 16, using a cross-entropy loss function to optimize parameters and an

Adam optimizer to adjust learning rates. Training spans 10 epochs with a learning rate of 110-5 and a

dropout rate of 0.1.

3.5. Evaluation Metrics and Validation

During our experiments, we chose to evaluate the effectiveness of the model using key performance

metrics such as precision, recall, and F1 scores, which are critical for measuring the model's ability to

classify and generalize across different cybersecurity vulnerabilities due to the variety of different CWEs

in the dataset. The performance comparison table below shows the performance of the various model

variants in Table 1.

Table 1. Comparison of Model Performance

Model Accuracy(%) F1-Score(%) ROC AUC PR AUC

CySecBERT-ARD 91.34 91.32 99.47 83.67

CySecBERT-AAR 91.28 91.13 99.32 82.33

CySecBERT-AR 90.93 90.85 99.43 82.15

CySecBERT 90.99 90.92 99.32 80.10

BERT 90.39 90.02 99.02 79.04

Proceedings of the 6th International Conference on Computing and Data Science

DOI: 10.54254/2755-2721/71/20241647

110

This table highlights the performance of the CySecBERT-ARD model in terms of precision, recall,

and F1-score, showing its robustness and accuracy in classifying CVE into CWE categories. In the table,

we also have other evaluation results from model variants including CySecBERT-AR, which features

additive attention and relative position encoding; and CySecBERT-AAR, which combines an attention

pool, additive attention, and relative position encoding. By comparing the performance based on the test

dataset involved with the same CWEs, CySecBERT-ARD is the one that integrated the best combination

of such techniques to capture the most accurate CVE contexts.

Table 2. Performance Metrics for CySecBERT-ARD for Top 10 CWEs Based on Support

CWE Precision(%) Recall(%) F1-Score(%) Support

79 99.04 98.70 98.87 2615

89 99.05 98.86 98.95 1050

78 87.63 90.97 89.27 288

94 87.25 85.33 86.28 409

125 91.18 89.14 90.15 580

190 83.46 83.46 83.46 260

787 84.84 87.34 86.07 782

476 93.36 92.59 92.98 243

434 84.87 83.77 84.31 154

59 93.04 90.68 91.85 118

The dataset was filtered with CWE categories which are associated with more than 100 CVEs

relevant to software development. To ensure a thorough and balanced evaluation, we divided the dataset

into training, evaluation, and test sets using a 7:1.5:1.5 ratio. The partial model performance for CWE

with more than 100 CVEs is shown in Table 2.

4. Future Work

Although our model has enhanced the classification task of CVE into CWE categories, there are several

promising aspects for future work toward better cybersecurity classification performance. These

opportunities aim to refine our existing framework and explore new dimensions of vulnerability

classification.

Firstly, the multi-label classification offers a good direction for future iterations. In our evaluation

setup, each CVE is linked to a single CWE category, but many vulnerabilities are multifaceted and

related so that they cannot be neatly categorized into one specific CWE. The exploration of a multi-label

classification task would address this complexity, enabling a single CVE to be linked with various CWEs,

the understanding of CVEs would be further studied due to the need to extract more accurately reflecting

their true nature.

Secondly, the potential enhancement could be based on the CWE hierarchy. The CWE taxonomy

often presents a hierarchy of weaknesses, and leveraging this structure could improve both the accuracy

and specificity of vulnerability categorization. The hierarchies are officially published in different views

and our model focuses on the software development view, which is the most popular view. Thus,

implementing hierarchical classification models would capitalize on the inherent relationships among

different classes of weaknesses, potentially leading to more precise and context-aware classifications.

Lastly, enhancing our approach to handle the rare CWEs. With less information provided by the CVE,

the model will suffer from an imbalanced data set. And in the real world, it is hard to balance the number

of CWEs for all categories. This would be one of our next studies which will not only improve the

model's overall accuracy but also ensure that it delivers reliable predictions across all CWEs.

5. Conclusion

In conclusion, we introduced a Bert-based framework CySecBERT-ARD which is refined with additive

attention, relative position encoding, and dual pooling. Based on the evaluation metrics, the combination

Proceedings of the 6th International Conference on Computing and Data Science

DOI: 10.54254/2755-2721/71/20241647

111

of attention techniques usage improves the CVE to CWE category classification accuracy. We also

integrated steps with Bert model pretrain using CVE descriptions, and data preprocessing with natural

language processing techniques tailored for cybersecurity texts. In this way, our approach our performed

by classifying the language of cybersecurity vulnerability descriptions as CVE. It efficiently recognizes

the differences between CWEs as weakness categories based on the CVE description, which is beneficial

for devising precise mitigation strategies and enhancing predictive precision in software weaknesses.

We anticipate further advancements, including additional CVE features and CWE descriptions

integration, hierarchical classifications, and improved handling of rare classes. These developments aim

to maintain the relevance and enhance the performance of our variants. Our work demonstrates how

machine learning techniques can benefit the field of software security and has the honor of providing

broader ideas for future research in the field.

Acknowledgments

Sincerely thank Dr. Yan Wu for her guidance and support throughout this research. We also extend our

gratitude to the NVD for the public dataset and resources.

References

[1] Bayer M, Kuehn P, Shanehsaz R, Reuter C. Cysecbert: A domain-adapted language model for the

cybersecurity domain. ACM Transactions on Privacy and Security. 2024 Apr 8;27(2):1-20.

[2] Elmishali A, Stern R, Kalech M. Diagnosing software system exploits. IEEE Intell Syst.

2020;35:7-15. doi: 10.1109/MIS.2020.2965496.

[3] Charmanas K, Mittas N, Angelis L. Predicting the existence of exploitation concepts linked to

software vulnerabilities using text mining. In: Proceedings of the 25th Pan-Hellenic

Conference on Informatics; 2021. doi: 10.1145/3503823.3503888.

[4] Younis A A, Malaiya Y. Using software structure to predict vulnerability exploitation potential.

In: 2014 IEEE Eighth International Conference on Software Security and Reliability-

Companion; 2014. p. 13-18. doi: 10.1109/SERE-C.2014.17.

[5] Bullough B L, Yanchenko A K, Smith CL, Zipkin J R. Predicting exploitation of disclosed

software vulnerabilities using open-source data. In: Proceedings of the 3rd ACM on

International Workshop on Security And Privacy Analytics; 2017. doi:

10.1145/3041008.3041009.

[6] Bhatt N, Anand A, Yadavalli V. Exploitability prediction of software vulnerabilities. Qual Reliab

Eng Int. 2020;37:648-663. doi: 10.1002/qre.2754.

[7] Younis A A, Malaiya Y, Ray I. Assessing vulnerability exploitability risk using software

properties. Softw Qual J. 2016;24:159-202. doi: 10.1007/s11219-015-9274-6.

[8] Almukaynizi M, Nunes E, Dharaiya K, Senguttuvan M, Shakarian J, Shakarian P. Patch before

exploited: An approach to identify targeted software vulnerabilities. In: AI in Cybersecurity.

Springer; 2018. doi: 10.1007/978-3-319-98842-9_4.

[9] Iannone E, Guadagni R, Ferrucci F, De Lucia A, Palomba F. The secret life of software

vulnerabilities: A large-scale empirical study. IEEE Trans Softw Eng. 2023;49:44-63. doi:

10.1109/TSE.2022.3140868.

[10] Aghaei S, Others. Manual CVE to CWE mapping: Challenges and expert solutions. J Cybersecur

Res. 2023;9(1):45-59.

[11] Kanakogi H, Others. Applying NLP techniques to classify CVE entries into CAPEC categories.

J Inf Secur Appl. 2021;59:102717.

[12] Das S S, Serra E, Halappanavar M, Pothen A, Al-Shaer E. V2w-bert: A framework for effective

hierarchical multiclass classification of software vulnerabilities. In: 2021 IEEE 8th

International Conference on Data Science and Advanced Analytics (DSAA); 2021. p. 1-12.

doi: 10.1109/DSAA53316.2021.9564227.

Proceedings of the 6th International Conference on Computing and Data Science

DOI: 10.54254/2755-2721/71/20241647

112

