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Abstract.  In the era of interconnected devices, as the intelligence of equipment deepens, human-

computer interaction models are continually evolving. People are no longer satisfied with 

traditional pen-and-paper methods and seek ways to take notes that can be saved and accessed 

in the cloud at any time. Among smart writing devices, smart pens are critical components. Most 

current smart pens utilize infrared cameras to capture high-frequency images, recording the 

coordinates of strokes as they traverse specific coded points. This positioning method requires 

special paper and has drawbacks such as high costs and low sensitivity. Addressing the 

shortcomings of common positioning methods, this paper proposes a magnetic positioning 

method. By establishing an array of magnetic sensors, it aims to achieve precise tracking of the 

smart pen's tip. The paper first explores the basic magnetic field theory of permanent magnets 

and introduces the fundamental theory of magnetic dipoles, followed by a discussion on classical 

magnetic positioning theory. Additionally, the paper analyzes the sources of error in magnetic 

sensors. Finally, it describes the use of MATLAB to design an app for the real-time calculation 

and display of handwriting.  
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1.  Introduction 

With the rapid development of information technology and the widespread use of smart devices, smart 
pens have emerged as a convenient and efficient input tool, gradually demonstrating their unique 
advantages in fields such as education, office work, and artistic creation. Smart pens not only fulfill the 
functions of traditional writing instruments but also utilize digital methods to record, store, and transmit 
written content, significantly enhancing users' writing experience and data processing capabilities. 

Currently, smart pens on the market primarily rely on technologies such as camara [1,2], pressure 

sensing [3], capacitive sensing, and optical recognition. Although these technologies have achieved 
some success in practical applications, they also have limitations. For instance, pressure sensors can 
wear out after prolonged use, leading to decreased measurement accuracy; capacitive sensing 
technology struggles with multi-touch and complex gesture recognition; and optical recognition 
technology is easily affected by external lighting, impacting recognition performance. Therefore, 
finding a more stable and efficient smart pen design has become a focal point of research. 

Vector magnetic sensing technology, as an emerging sensing technology, has shown promising 

application prospects in the field of smart devices in recent years. In 2010, Yang et al. combined particle 
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swarm optimization with the Levenberg-Marquardt (LM) algorithm to achieve the positioning and 
tracking of three magnetic dipole targets [4]. In 2018, Gao et al. applied the LM algorithm for locating 
moving magnetic targets [5]. Vector magnetic sensors can detect the strength and direction of magnetic 
fields and convert this information into precise spatial position and orientation data through algorithms. 

Compared to traditional sensing technologies, vector magnetic sensing offers high sensitivity, strong 
anti-interference capability, and good stability, making it particularly suitable for application in smart 
pen design. 

This paper aims to explore the design of smart pens based on vector magnetic sensing technology. 
By analyzing its working principles, key technologies, and application scenarios, we will verify its 
feasibility and advantages in practical applications. First, we will introduce the basic principles and 
characteristics of vector magnetic sensors; then, we will detail the system design and hardware 
implementation of the smart pen; next, we will analyze the software algorithms and data processing 

methods; finally, we will validate the performance of the smart pen through experiments and practical 
applications, while also looking ahead to its future development directions. 

2.  Mathematical Model of Magnetic Positioning Methods 

Between 1820 and 1821, J. B. Biot and F. Savart conducted experiments on straight electric currents 

and electromagnetic forces. They concluded that the electromagnetic force exerted on a point at a 
distance d from a straight conductor is directly proportional to the current intensity I and inversely 
proportional to the distance d. This is known as the Biot-Savart Law, and the magnetic positioning 
studied in this article is based on this principle. 

2.1.  Biot-Savart Law 

As shown in Figure 1, the current element dl has a current intensity of I, point P is any observation point, 
r is the distance between the current element and point P, and θ is the angle between the line connecting 
the current element to observation point P and the current element itself. The direction of the magnetic 
flux density dB generated by the current element at point P can be determined using the right-hand rule 
of Ampère; at point P, the magnetic flux density direction is perpendicular to the paper and directed 
inward. The magnitude of the magnetic flux density dB can be obtained using the Biot-Savart law, as 

indicated in equation (1). The vector form of the Biot-Savart law can be found in equation (2). 𝜇0 is the 
magnetic permeability of free space. 

 

Figure 1. Schematic diagram of the magnetic field generated by a current element at a point in space. 
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2.2.  Magnetic Dipole Localization Model 
The magnetic field generated around ferromagnetic targets, together with the background magnetic field, 
causes a distortion in the surrounding magnetic field, known as magnetic anomaly. When the detection 
distance exceeds three times the size of the target, it can be treated as a magnetic dipole, with its vector 

magnetic field represented by Equation (3), where m denotes the target's magnetic moment. 

𝑩(𝒎,𝒓) =
𝜇0

4𝜋
[
3(𝒎 ⋅ 𝒓)𝒓

|𝒓|5
−

𝒎

|𝒓|3
] (3) 

2.3.  Application of the L-M Algorithm to Solve the Magnetic Dipole Model 
The mathematical expression for a magnetic dipole is a high-order nonlinear equation with a very 

complex form. Although there are currently many optimization algorithms available for solving high-
order nonlinear equations, such as Powell’s method [6], Downhill Simplex [7], DIRECT [8], and 
multipole coordinate search methods [9], we ultimately chose the L-M (Levenberg-Marquardt) 
algorithm [10] as the primary method for solving the magnetic dipole model. 

The L-M algorithm is an iterative method used to find the minimum of nonlinear multivariable real 
functions in the form of sums of squares. It has become a standard solution for nonlinear least squares 
problems, combining both the gradient descent method and the Gauss-Newton method. The algorithm 
inherits the local convergence properties of the Gauss-Newton method while also retaining the global 

characteristics of gradient descent. Because the L-M algorithm utilizes approximations of second-order 
derivative information, it is significantly faster than gradient-based methods. Essentially, it functions as 
a second-order gradient method, offering rapid convergence that meets real-time requirements. When 
the solution obtained using the L-M algorithm differs greatly from the correct solution, the algorithm 
behaves similarly to gradient descent, resulting in slow convergence but ensuring eventual convergence. 
Conversely, when the solution is close to the correct answer, the L-M algorithm operates as the Gauss-
Newton method. 

If m groups of magnetic field data are collected, substituting them into equation (3) will yield a 
nonlinear system of equations consisting of m equations, as shown in equation (4). 

…
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In Equation (4), 𝒓 = (𝑥 − 𝑎)𝒊 + (𝑦 − 𝑏)𝒋 + (𝑧 − 𝑐)𝒌 represents the displacement vector between 

the permanent magnet and observation point P, while 𝒎 = 𝑛𝒊 + 𝑝𝒋 + 𝑞𝒌 denotes the magnetic moment 
of the permanent magnet. Bi indicates the magnetic field strength data collected during the i-th 
measurement. Equation (4) can be succinctly expressed as Equation (5). 

𝒇𝑖(𝑷) = 𝟎, 𝑖 =  1, 2, . . . ,𝑚 (5) 

In equation (5), 𝑷 = (𝑎, 𝑏, 𝑐, 𝑛, 𝑝, 𝑞)T represents the unknown parameters, which include the position 

of the permanent magnet (𝑎, 𝑏, 𝑐) and the magnetic dipole moment (𝑛, 𝑝, 𝑞). 
Solving a system of nonlinear equations can be equivalent to an unconstrained optimization problem, 

where a target function is constructed to find its optimal solution (or minimum point) within the domain 
of the independent variables. If the target function consists of the sum of squares of several functions, 

then the problem of finding its minimum value is referred to as a nonlinear least squares problem. 

From equation (5), it can be seen that 𝒇 ∶  𝐷 ⊂ 𝑅6 → 𝑅𝑚 , 𝒇 = (𝑓1, 𝑓2, … , 𝑓𝑚)𝑇. The definition of the 
objective function is provided in equation (6). 
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Clearly, if 𝜑 ∶  𝐷 ⊂ 𝑅6 → 𝑅1, solving the system of equations (5) is transformed into the problem of 
finding the optimal solution (or minimum point) for expression (6). This is a nonlinear least squares 

problem, as indicated in expression (7). We will solve this problem with the L-M algorithm. 

𝑚𝑖𝑛
𝑥∈𝐷

𝜑(𝑷) = 𝑚𝑖𝑛
𝑥∈𝐷

1

2
𝒇(𝑷)𝑇𝒇(𝑷) (7) 

3.  Magnetic Sensor Error Analysis 

In an ideal scenario, the measurements from the magnetic sensor are completely accurate. Depending 
on the position of the magnetic sensor, the three-axis readings reflect the projection of the geomagnetic 
field strength across the three axes, satisfying equations (8) and (9): 

𝒉 = [ℎ𝑥 , ℎ𝑦 , ℎ𝑧] (8) 

ℎ𝑥
2 + ℎ𝑦

2 + ℎ𝑧
2 = |𝑩|2 (9) 

B is the geomagnetic induction intensity vector, and h represents its three components. 
For magnetic sensors, errors can be divided into two parts. One part originates from internal factors, 

including variations in three-axis sensitivity, non-orthogonality of the three axes, and zero bias. The 
other part comes from external sources, namely hard magnetic interference and soft magnetic 
interference.  

The internal errors are illustrated in the figure below. Hard magnetic interference is caused by 
permanent magnets near the sensor, while soft magnetic interference affects both the strength and 
direction of the original magnetic field. 

 
  

(a). variations in three-axis 

sensitivity. 

(b). non-orthogonality of the three 

axes. 
(c). zero bias. 

Figure 2. The internal errors. 

First, the external magnetic field has been altered due to interference from both soft and hard 
magnetism. Consider the external interference as shown in Equation (10) 

𝒉𝒎 = 𝑰𝟑×𝟑𝒉0 + 𝑭𝒉 (10) 

𝒉0 is the ideal measurement result, 𝑰𝟑×𝟑 is a 3×3 matrix representing soft magnetic interference, and 
𝑭𝒉 is a 3× 1 vector representing hard magnetic interference. After considering the internal errors, we 
arrive at Equation (11). 

𝒉 = 𝑺𝟑×𝟑𝑵𝟑×𝟑𝒉𝒎 + 𝑭os = 𝑺𝟑×𝟑𝑵𝟑×𝟑(𝑰𝟑×𝟑𝒉0 + 𝑭𝒉) + 𝑭os (11) 

In the equation, 𝑺𝟑×𝟑 and 𝑵𝟑×𝟑 are both 3× 3 matrices representing sensitivity differences and non-
orthogonal effects, while 𝑭os is a  3× 1 vector indicating zero offset. 
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The simplification yields the relationship between the true value and the measured value (12). 

𝒉0 = 𝑾−𝟏(𝒉− 𝑽) (12) 

𝑾 is a 3× 3 matrix and is symmetric, resulting in only 6 coefficients. 𝑽 is a 3× 1 vector, which has 

a total of 9 coefficients. If we only consider hard magnetic interference, then we have 𝒉0 = 𝒉 − 𝑽. Since 

𝒉0 lies on the sphere, there is equation (13). 

𝒉0
T𝒉0 = (𝒉 − 𝑽)T(𝒉 − 𝑽) = |𝑩|2 (13) 

Both 𝒉 and 𝑽 can be expressed in the form of 3× 1 vectors, leading to equation (14). 

[ℎ𝑥
2 + ℎ𝑦

2 + ℎ𝑧
2
] − [ℎ𝑥 ℎ𝑦  ℎ𝑧  1]

[
 
 
 

2𝑉𝑥
2𝑉𝑦
2𝑉𝑧

𝐵2 − (𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2)]

 
 
 

(14) 

For the above equation, we can use the least squares method to determine the bias value. 

4.  Smart Pen Assistant App Design 

We have obtained the equations regarding magnetic moment, coordinates, and magnetic induction 
intensity (4). Using the L-M algorithm API in MATLAB, we solved this equation and applied the least 
squares method to (14) to determine the bias error. Finally, we plotted the trajectory of the pen. 

 

Figure 3. Smart Pen Assistant 

In the above figure, the left is the serial port information, the middle is the real-time three-axis 

magnetic induction intensity of the magnetic sensor array, and the right is the real-time handwriting 
display. 

We designed and built a magnetic sensing array with a cylindrical magnet in a pen, and Figure 4 is a 
photograph of the real thing. 

Proceedings of  the 2nd International  Conference on Functional  Materials  and Civil  Engineering 
DOI:  10.54254/2755-2721/91/20241104 

31 



 

 

 

Figure 4. photograph of magnetic sensor arrays and pen 

5.  Conclusion 

In this paper, the algorithm of magnetic sensor array positioning is discussed, the L-M algorithm is used 
to solve the equations, and the error causes of the magnetic sensor are discussed to improve the 
positioning accuracy. Finally, MATLAB was used to design an app to solve the uploaded data in real 
time and display handwriting. We have built the real thing, and the real thing has been tested to have 
good positioning accuracy, which can display handwriting in real time. 
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