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Abstract. Photorealistic rendering is essential for immersive virtual reality and real-time ray 

tracing is required for this, yet the necessary computational load has so far hindered its use in 
scenarios where a fast response and high frame rates are paramount. To overcome this challenge, 

we present a deep learning-based model that optimises the computational load of ray tracing 

through utilising convolutional neural networks (CNNs) to predict light—scene interactions. We 

achieve this by training CNNs from datasets with offline ray-traced images. Using this learning 

process, we approximate the contents of light transport simulations from scene point sampling. 

The use of this optimised algorithm in virtual reality scenes, thus, enables renderings of more 

complex scenes, with dynamic lighting, complex geometry and interactive elements under high 

frame rates, keeping users immersed and responsive to events. Our results show that this method 

achieves visual similarities to traditional ray tracing, which is photorealistic rendering, but can 

be performed in real-time in virtual reality. We anticipate this work leads to many potential 

applications of ray tracing in many scenarios in virtual reality, such as gaming, architectural 

rendering and training. 

Keywords: Real-time ray tracing, deep learning, convolutional neural networks, virtual reality, 

immersive environments. 

1.  Introduction 

Many recent breakthroughs in computer graphics research have been motivated by the quest to achieve 

increasingly realistic visual rendering, especially in the case of virtual reality (VR). The development of 

ray tracing as a technique is one such major advance, and it allows for a realistic simulation of light-
matter interactions, such as reflection and refraction. However, to render a complex scene at high quality 

using ray tracing, it is often necessary to trace the path of one or more rays for each pixel in the output 

image. As the number of pixels in today’s VR scenes can easily exceed 1 million, ray tracing quickly 
becomes computationally prohibitive. Traditional ray tracing algorithms also pose a number of technical 

challenges in a real-time VR setting, such as performing collisions tests between traced rays and all 

objects in a scene. Additionally, existing techniques typically provide correct solutions only for 
relatively simple materials, without the ability to simulate more intricate effects, such as translucency 
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or volumetric scattering. Despite these drawbacks, existing ray tracing techniques are known to yield 

high-fidelity rendering results, and computer graphics researchers have hence been pursuing alternative 

methods that retain the fidelity of ray tracing while reducing the computational burden [1]. One 

intriguing possibility is to exploit deep learning, and in particular, convolutional neural networks 
(CNNs). Due to their architecture and training procedure, CNNs can be highly effective at recognising 

patterns and can, in many cases, generalise any results sufficiently to be applicable to unseen inputs. 

2.  Optimization of Ray Tracing Algorithms Using Deep Learning 

2.1.  Convolutional Neural Networks for Ray Tracing 

Convolutional neural networks (CNNs) have been used to great advantage in many areas of computer 

vision, for which they are blazingly effective – and also showing promise as an efficient way to reduce 

the computational cost of render passes. In the context of ray tracing, CNNs can try to guess what light 
will do based on patterns learned from very large sets of ray-traced images. In other words, the CNN 

train its own model of light transport on a large corpus of ray-traced data, and use that approximation 

rather than perform the computationally costly light transport simulation. It can reliably guess how the 
maths of indirect lighting will play out, massively reducing the computational burden in the render 

pipeline. One of the great things about this approach is that the CNN is able to generalise away from the 

training data (that is, to guess what will happen in unseen combinations of scenes and materials). This 
means that, in general, it can provide real-time ray traced virtual reality rerenders at frame rates where 

a more direct approach would struggle, even for super-complex, ever-changing VR scenes. In particular, 

the ability to move on from static datasets to dynamic ones should mean that light and material variants 

can be calculated in real time, as the viewer moves within the world. This is crucial for interactive VR, 
where a scene can transform dynamically based on the user changing the lighting source or moving the 

objects [2]. In this case, dynamic changes on light sources or geometry position would just be 

recalculated by the CNN without missing a beat. Better still, a CNN model can be trained, then tweaked 
using techniques known as transfer learning, to better handle particular types of scenes or objects.  

We can model the CNN operation of a ray-tracer mathematically by zeroing in on the convolution 

operation that lies at the heart of how the network processes input images and makes predictions about 

light interactions. The convolution operation on the CNN can be expressed as: 

 Zi,j,k
(l) = ∑ ∑ ∑ Wm,n,c,k

(l)C(l−1)
c=1

N
n=1

M
m=1 ⋅ Xi+m−1,j+n−1,c

(l−1) + bk
(l)

                           (1) 

This formula illustrates how the CNN computes each element of the feature map in layer l by 

convolving the input from the previous layer with a set of filters W(l) and adding a bias term b(l). 

2.2.  Integrating Deep Learning with Traditional Ray Tracing 

This combination of DL with classic ray tracing requires a careful balancing act between what DL is 

good at (pattern recognition and approximation) and what classic ray tracing is good at (accuracy and 
all necessary details). The hybrid model can work by having CNNs handle primarily the initial stages 

of the light interaction calculations – such as global illumination, shadow mapping and so on – while 

the classic ray tracing algorithm takes care of refining these predictions, and of individual cases (eg, 
caustics and reflections) where the additional accuracy is required. The advantage of this model is that 

it substantially reduces the number of rays that need to be traced (hence, the computational load), and is 

especially important to immersive VR applications that may not possess a brute-force ray tracer as an 
option. The secret behind this combination is a smooth handoff between the CNN and the classic ray-

tracing engine: the CNN quickly determines the lighting conditions of the general scene and provides a 

rough approximation of it, while the classic ray-tracer refines it – adding detail and accuracy where it 

can and where it is needed – while spending additional computational load only in areas where the 
CNN’s approximations are not good enough (eg, where caustics occur, or when many different light 

bounces have to be accounted for, as in typical real-world light scattering scenarios) [3]. A more 
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advanced integration can use adaptive sampling – one can dynamically adjust the number of rays traced 

by the classic ray-tracer based on the confidence levels of the CNN’s predictions. 

2.3.  Training and Implementation Considerations 

To train the CNN to predict light interactions accurately in the ray-traced scene, we used a dataset of 
pre-rendered scenes with varying complexity, annotated with fine-grained light transport information. 

During the training, the network was guided to learn expensive light interaction information by gradient 

descent with backpropagation. Once trained, the optimised CNN was implemented in the GPU-
accelerated rendering pipeline, enabled by real-time inference during ray tracing. The implementation 

of the whole pipeline also involves careful tuning of the trade‑off between speed and accuracy, 

especially for high-frequency features such as fine textures and sharp edges under different visual 

conditions, while the dataset selection ensures that the CNN can handle the wide range of visual 
conditions in VR environments, including not only soft shadows and subtle gradients but also sharp 

highlights and dramatic specular reflection. During the training, data augmentation and network 

regularisation are employed to mitigate the overfitting issue, while iterative test and validation are also 
performed to tune the inference performance by comparing the CNN’s prediction against the ground 

truth ray-traced images [4]. The GPU implementation further takes advantage of the parallel processing 

capabilities, which reduces the inference time significantly and enables real-time application. The 
trained CNN is then integrated into the hybrid rendering pipeline, able to quickly and accurately predict 

the light interaction, offering a solid foundation for the entire pipeline [5]. 

3.  Application in Immersive Virtual Reality 

3.1.  Enhancing User Immersion Through Optimized Rendering 
Given the importance of visuals for rendering a virtual environment, the realism of visual rendering is a 

crucial factor for user immersion for VR. In contrast to legacy rendering techniques, optimised ray 

tracing algorithms with deep learning provide a hyper-realistic rendering of scenes, which can be 
rendered at the requisite frame rates for VR and thereby maximise the user experience. Moreover, by 

increasing the computational efficiency of ray tracing, our approach reduces the computational burden 

typically associated with more real-looking, detailed scenes with more dynamic natural light and a very 

high complexity of geometric objects that are important to create natural-looking environments and 
hence believable virtual worlds. The increased level of realism also improves immersion, which in turn 

enables more natural user interactions within that environment (based on fidelity of the rendered image 

matching natural physical behaviour of such visuals). For instance, an improved user experience in a 
VR architecture walkthrough application could allow the user to navigate across different rooms within 

that building showcased in the VR environment. The position and intensity of light sources across the 

space change in real time as the user moves from one room to another. The shadows cast, reflections on 
different surfaces and diffused light all dynamically adapt to changing light conditions that ultimately 

offer the user an experience that resembles natural light behaviour. This level of realism is crucial for 

achieving a sense of presence in the virtual environment, the well-known key to achieving immersive 

VR [6]. Furthermore, the ability to render complex scenes at high frame rates, especially when the scene 
is changing (such as the user moving around in that VR environment), is crucial to avoiding the risk of 

motion sickness and achieving the best possible user experience. Table 1 illustrates the impact of 

optimised ray tracing on VR immersion, comparing the rendering features before and after optimisation 
[7]. 

 

 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/71/20241669 

227 



 

 

Table 1. Impact of Ray Tracing Optimization on VR Immersion 

Rendering Feature 
Before 

Optimization (ms) 

After 

Optimization 

(ms) 

Impact on Immersion 

Dynamic Lighting 150 80 
Increased realism in various lighting 

conditions. 

Real-Time Shadow 

Adjustments 
120 60 

Smooth transitions and adjustments in 

shadows. 

Complex Geometry 

Rendering 
180 90 

More detailed and accurate representation 

of objects. 

Reflection and 

Refraction 
200 100 

Improved visual fidelity in reflective and 

refractive surfaces. 

High Frame Rate 

Maintenance 
160 70 Seamless experience with minimal latency. 

3.2.  Real-Time Interaction and Responsiveness 

One of the most important constraints for VR applications is responsiveness – any noticeable lag or 

delay between the interacting user and the rendering system can be very disruptive and can even induce 
motion sickness. The optimised ray tracing algorithm continues to enable real-time interaction in scenes 

with complex lighting and geometry, and a balance between computational cost and rendering fidelity 

is crucial. The CNN offloads some computational work so that the system can dedicate more 
computation to user input and scene updates in real-time. For example, in many high-end VR 

applications, there is a need to keep up with the frame rates when there are rapid movements and quick 

reactive times [8]. The optimised algorithm allows us to instantly change the lighting and shading based 

on the user movement, such that the rendered output at any time can keep up with the user action. This 
responsiveness is not only important in increasing the sense of realism in the game but also to ensure 

the user immersion without any disruption. For instance, when you pick up a virtual cup, it should appear 

to be the cup that you are moving around in real time instead of providing any angled distraction that 
can interrupt your gaming experience [9]. In addition, the decreased computational load also allows for 

a wider range of complex interactions – such as real-time physics motions (eg, cloth-simulation 

applications), analysis of more complex geometries, or dynamic environment changes. 

3.3.  Application to Various VR Scenarios 

The optimised ray tracing algorithm could be applied to various VR scenarios from games and 

entertainment to educational simulations and architectural visualisations. In a game, the real-time 

rendering of a dynamic environment such as an indoor or outdoor scene with the accurate lighting from 
various light sources creates a more immersive and impactful narrative and emotional engagement of 

the player. With the accurate representation of light and shadow, the realism and engagement of the 

simulation in an educational scenario or learning game improves. In that context, the realistic rendering 
of a virtual lab or historical reconstruction promotes learning effectiveness. Likewise, in an architectural 

visualisation, the optimised ray tracing algorithm allows for precise representations of different 

materials and lighting conditions, which is necessary for architects and designers to give clients a clear 

understanding of what they will be seeing during day or night and at differing seasons of the year. The 
algorithm provides a realistic preview of how light interacts with materials of various colours, textures 

and diffusivities. Such a preview facilitates experimenting with different lighting configurations and 

materials within an interactive virtual environment to ultimately produce a design that meets the client’s 
expectations and aligns with their vision [10]. In VR-based training simulations, such as those used for 

medical or military training, the high-fidelity rendering of the illuminant spectrum could further improve 

the realism of the training environment and training outcomes. The versatility of this algorithm shows 
that it can be applied to a wide variety of VR projects, from games and entertainment to educational 

simulations and architectural visualisations. 
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4.  Discussion 

4.1.  Comparison with Traditional Ray Tracing Methods 

However, traditional ray tracing is too slow for such real-time applications, especially in VR where a 

high frame rate is crucial. The overhead is due to the fact that rays must be traced for every part of the 
scene. Our optimisation approach significantly reduces this overhead by limiting the number of rays that 

need to be traced. This leads to significant improvements in computational and memory efficiency and 

permits real-time ray tracing, including for VR. The efficiency gain has the potential to revolutionise 
VR by enabling much more complex and dynamic VR environments. For example, in a traditional ray 

tracing pipeline, one could think about rendering a complex scene with multiple light sources and 

complex global illumination. Tracing the full set of rays is computationally demanding and leads to very 

high rendering times which are not suitable for real-time applications. Our optimisation approach 
leverages the predictive capabilities of CNNs to estimate the global illumination and handle less 

complex light interactions, dramatically reducing the overhead of ray tracing. Along with an acceleration 

of the rendering process, our method frees up computational resources that can be leveraged to add more 
elements in the scenes such as dynamic objects, complex materials and interactivity [11]. Figure 1 

compares the computational power required for different rendering tasks using traditional ray tracing 

methods versus the optimized ray tracing approach. 

 

Figure 1. Comparison of Computational Power 

4.2.  Limitations and Challenges 

Despite these advantages, this hybrid approach still poses challenges when optimising a CNN to 
accurately predict lighting conditions in highly complex scenes that contain unusual geometries or 

material properties that are not well-represented in the training data. Using traditional ray tracing with 

the CNN just to clean up the results will still leave the potential for artifacts or inaccuracies in the final 
result. For example, if the CNN is unable to predict the lighting interactions correctly with very reflective 

or refractive surfaces, such as glass or water, these scenes can be easily spotted as being less realistic 

than the rest. Furthermore, the training process itself is costly, and requires access to high-quality 

training data and a great amount of energy to train. This is not a feasible option for small development 
teams or projects with limited resources, as the initial set-up and training may require significant time 

and investment. Another challenge is integrating the CNN into the existing rendering pipeline, which 

may require significant modifications to the workflow. This may include reworking existing shaders, 
rewriting the rendering pipeline to accept the CNN’s output, and also making sure that the output is 

compatible with a wide range of VR hardware and software. These are all challenges that need 

addressing in the future with further research and development of this technique, to guarantee that the 
optimisation method is as robust as possible and can easily be adapted to a variety of VR environments 

and applications [12]. 
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5.  Conclusion 

This work demonstrates the potential of deep learning to drive real-time ray tracing, in particular for 

immersive virtual reality. Our hybrid ray tracing technique is able to leverage convolutional neural 

networks embedded into the pipeline, greatly reducing the computational cost of rendering challenging 
scenes. In contrast to conventional ray tracing, the CNN algorithm supports real-time modification of 

lighting and geometry, while maintaining the high frame rates necessary for an immersive VR 

experience. The visual quality is close to that produced by traditional ray tracing but the lower 
computational load supports more complex scenes and interactions, enhancing the immersion of the user 

experience. Challenges remain, including generalising the CNN model to support a broader range of 

visual scenes, as well as integrating the optimised pipeline into a VR system. Future research will focus 

on addressing these challenges and exploring refinements to the deep learning models to support 
additional applications of this technology in other areas of computer graphics. This research contributes 

to the current effort to make photorealistic rendering feasible in real-time applications, and in particular 

in the nascent field of virtual reality. 
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