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Abstract. This study conducts a comparative analysis of traditional and machine learning models 

for financial option pricing, using historical stock prices and interest rates data. Traditional 

models such as the Black-Scholes, Heston, Merton Jump-Diffusion, and GARCH are evaluated 

against machine learning models including Multi-Layer Perceptrons (MLPs) and Long Short-
Term Memory (LSTM) networks. The analysis employs performance metrics like Mean Squared 

Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R² value. 

Results indicate that the GARCH model excels in predictive accuracy due to its ability to capture 

volatility clustering, while machine learning models, especially the Tuned Neural Network, 

demonstrate superior flexibility and adaptability in managing complex non-linear relationships 

in financial data. Traditional models, although theoretically robust, show limitations under 

varying market conditions. The study underscores the potential of hybrid approaches combining 

traditional and machine learning techniques to leverage their respective strengths for more 

accurate and reliable option pricing. Future research directions include exploring advanced 

machine learning architectures and improving model transparency through explainable AI. 

Keywords: Machine Learning, Financial Math, Neural Networks, Option Pricing, Predictive 

Accuracy. 

1.  Introduction  
In the field of financial option pricing, traditional models such as the Black-Scholes [1], Heston [2], 

Merton Jump-Diffusion [3], and GARCH models [4] have been extensively utilized. The Black-Scholes 

model is known for its computational simplicity and closed-form solution but is limited by its 
assumption of constant volatility, which is often unrealistic in financial markets. The Heston model 

improves upon this by introducing stochastic volatility, which is better in accounting for volatility smiles. 

The Merton model incorporates jumps in asset prices to capture sudden market fluctuations, and the 

GARCH model captures volatility clustering in financial time series. However, most of these models 
have limitations in accurately reflecting real market conditions and require precise parameter estimation. 

Recent advancements have integrated machine learning techniques into option pricing, with studies 

demonstrating the potential of neural networks to model option prices [5]. Machine learning models, 
including Multi-Layer Perceptrons (MLPs) and Long Short-Term Memory (LSTM) networks, offer 

flexibility in capturing non-linear relationships and dependencies in financial data [6]. Comparative 

studies highlight the strengths of traditional models in interpretability and theoretical foundations, while 
machine learning models excel in predictive power and adaptability [7]. Practical applications of these 
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models include their use in trading strategies, risk management, and portfolio optimization. The GARCH 

model is widely used for forecasting volatility, and the Merton model is useful for valuing options in 

volatile markets. Machine learning models have been integrated into algorithmic trading systems to 

enhance adaptability and optimize trading strategies [8]. Current research trends involve hybrid 
approaches combining traditional and machine learning models to leverage the strengths of both [9]. 

Despite the success of traditional models, they have notable limitation, including oversimplification of 

market dynamics and dependency on accurately estimated parameters. There is a lack of comprehensive 
evaluations comparing machine learning techniques with traditional models in option pricing, especially 

considering various performance metrics under different market conditions. Further research is needed 

to test these models in real-world applications and integrate additional market factors. 

This study aims to explore the advantages of machine learning models in option pricing by evaluating 
various neural network architectures and comparing their performance with traditional methods. The 

objectives are to assess predictive accuracy, analyze model performance under our specific market 

conditions, and propose an optimized approach that integrates traditional models with machine learning 
techniques. This research contributes to the evolving landscape of financial modeling, it sets as an initial 

attempt aiming to offer more accurate option pricing strategies that benefit financial market stakeholders. 

2.  Methods 

2.1.  Data Collection and Preprocessing 

In this study, we collected historical stock prices for the FTSE 100 index using the Yahoo Finance API 

[10] and obtained historical interest rates, specifically the UK government bond yield, from January 1, 

2012, to January 1, 2022, from the UK Debt Management Office and the Bank of England. The dataset 
has a daily frequency, and any missing values were forward-filled using the last available observation 

to ensure temporal continuity and accuracy in subsequent analyses. The dataset was split into training 

and testing sets, with the first 8 years of data used for training and the last 2 years reserved for testing. 
This approach allows us to evaluate the model’s performance on unseen data, ensuring the robustness 

and generalizability of our findings. 

To obtain continuous compounded returns, we calculated the log returns of stock prices: 
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where rt represents the log return at time t, Pt is the price at time t, and Pt−1 is the price at the previous 

time step. Volatility was computed as the annualized standard deviation of log returns, scaled by the 
square root of 252, which is the approximate number of trading days in a year: 

   252std r  
 

where std(r) is the standard deviation of r. By following these steps, we can ensure that the data was 
clean, consistent, and ready for the next stages of feature engineering and model implementation. To 

enhance model predictions, we derived additional features from the raw data: 1. Daily Returns: 

Calculated as the percentage change in closing prices to capture daily fluctuations. 2. Volatility: 
Computed as the rolling standard deviation of returns over a 20-day period to capture recent volatility 

trends. 3. 20-Day Simple Moving Average (SMA): Calculated as the mean of the past 20 closing prices 

to highlight longer-term trends and smooth short-term fluctuations. 4. Bollinger Bands: Constructed 
using the 20-day SMA and standard deviation to identify potential overbought or oversold conditions. 

These features, along with the opening price, highest price, lowest price, closing price, and trading 

volume, were used to provide a comprehensive view of market conditions. The dataset, with these 

engineered features, was normalized for model training and evaluation. The target variable was the 
payoff of a European call option, calculated as: 

Payoff = max(ST − K,0) , 
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where ST is the closing price at maturity and K is the strike price, set at 7000. The fixed strike price was 

chosen to streamline the analysis and focus on a specific scenario for more controlled and detailed 

insights. This setup resulted in the options being out-of-the-money (OTM) from April 2020 to April 

2021, as shown in Figures 1 and 2. OTM options typically have wider bid-ask spreads and provide less 
information about future volatility, which is a known limitation. Nevertheless, this approach allows us 

to systematically explore the model's performance under our specific set of conditions. 

2.2.  Models for Predicting Option Prices 
We applied several math models to predict option prices, including the Black-Scholes, GARCH, Heston, 

and Merton Jump-Diffusion, each offering unique approaches to capturing market dynamics and 

volatility. It is crucial to estimate the parameters of each model accurately. For example, in the GARCH 

model, parameters such as Omega, Alpha, and Beta are estimated using maximum likelihood estimation 
(MLE). For the Heston and Merton models, parameters like volatility, mean-reversion rate, and jump 

intensity are estimated based on historical data. However, it is important to note that assuming future 

prices will have the same volatility as historical prices is often questionable. Market practitioners prefer 
using implied volatility derived from current market prices of options, as it more accurately reflects the 

market's expectations of future volatility, which worths to be further investigated in future works.  

The value of an option under a risk-neutral probability measure is determined by: 

𝐶𝑡 = 𝐵𝑡𝐸 (
𝐶𝑇
𝐵𝑇

|𝐹𝑡) 

where Bt is the discount factor [11]. For practical implementation, the option value at the initial time t = 
0 is calculated as: 

 

𝐶0,𝑖 = 𝑒𝑥𝑝(−𝑟𝑇) 𝐶𝑇,𝑖 
 

Here, r is the risk-free interest rate, T is the time to maturity, and CT,i represents the payoff at maturity 

for the i-th simulation. Averaging the outcomes from N simulations yields the option price estimate: 
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Monte Carlo simulations were employed for models where closed-form solutions are complex or 

non-existent, such as the Heston model and the Merton Jump-Diffusion model. These models involve 
stochastic processes with features like stochastic volatility or jumps, which lack straightforward 

analytical solutions. Monte Carlo methods enable flexible and accurate pricing by simulating numerous 

possible paths for the underlying asset prices and averaging the resultant payoffs. For fairness in 
performance comparisons, we matched the simulation methods to each model's characteristics. The 

Heston model benefits from Monte Carlo simulations to capture its path-dependent nature and volatility 

dynamics accurately. Similarly, the Merton model relies on simulations to account for sudden price 

jumps and simulate realistic price paths. In contrast, the Black-Scholes and GARCH models were 
evaluated using MLE, which optimally estimates parameters based on observed data, minimizing bias 

from numerical approximations and avoiding the computational intensity of simulations. This approach 

ensures that the performance of these models is assessed based on fitting historical volatility patterns. 
To enhance the accuracy of Monte Carlo simulations for models like Heston and Merton, we 

employed variance reduction techniques such as Antithetic Variates and Control Variates. These 

methods reduce simulation variance, leading to more reliable estimates with fewer runs [11]. Combining 

these techniques with a sufficiently large number of simulations (100,000) ensures that our comparisons 
reflect the true predictabilities of each model while capturing the complexities of financial markets. 
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Table 1. Model Performance with Error Metrics Formulas 

Model/Technique MSE MAE R² RMSE CV MSE 

GARCH Model 22.4691 4.2905 0.9982 4.7411 33.7036 

BS Model 4564.6893 50.4354 0.682 67.5666 5298.7632 

Heston Model 10519.3887 90.4231 0.539 102.5646 11264.521 

Merton Model 30649.7015 120.5342 0.472 175.0606 32910.812 

MLP1 6724.8021 43.9605 0.8531 82.0049 4746.2934 

MLP2 4104.4417 32.2938 0.9173 64.0659 3450.0876 

LSTM 2074.3047 23.1064 0.9547 45.5445 2119.2349 

Tuned Neural Network 150.1864 6.9272 0.9966 12.2551 266.9855 

Gradient Boosting 188.0342 7.0980 0.9958 13.7126 359.9526 

Random Forest 186.2362 6.8587 0.9958 13.6468 332.3587 

Decision Tree 389.4911 9.5410 0.9913 19.7355 506.9706 

Linear Regression 14541.5095 89.4715 0.6734 120.5882 25571.0241 

Neural Network 421.6675 10.9908 0.9905 20.5345 1304.2397 
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3.  Results 

Table 1 shows that the GARCH model leads in performance with the lowest MSE, MAE, RMSE, and 

CV MSE, and the highest R² value, indicating its strong ability to capture volatility clustering. The 

Tuned Neural Network also performs well, with low error metrics and a high R² value, demonstrating 
its effectiveness in managing complex non-linear relationships. Machine learning models like Random 

Forest, Gradient Boosting, and LSTM also show strong results. In contrast, traditional models like 

Merton, Black-Scholes, and Heston have higher errors and lower R² values, with the Merton model 
particularly struggling with sudden jumps and complex dynamics. Linear Regression shows high errors, 

highlighting the benefits of more sophisticated models. 
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(a)                                                                               (b) 

 
(c)                                                                               (d) 

 

Figure 1. Option Prices Comparison: (a) Black-Scholes Model; (b) GARCH model; (c) Heston Model; 
(d) Merton Jump Diffusion Model 

Figure 1(a) shows that the Black-Scholes model predicts option prices accurately during stable 

periods but fails to account for volatility spikes, leading to significant deviations during high volatility 
periods like early-2020 and mid-2021. Figure 1(b) demonstrates that the GARCH model aligns closely 

with actual prices, effectively capturing market volatility and providing reliable predictions even during 

turbulent periods. In Figure 1(c), the Heston model captures stochastic volatility but shows discrepancies 

during volatile periods, suggesting it may not fully handle market instability. Figure 1(d) reveals that 
the Merton Jump Diffusion model effectively captures price jumps but tends to overestimate during 

stable periods, indicating its sensitivity to sudden market changes and a need for improved calibration. 

(a)                                                                               (b) 
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(c)                                                                               (d) 

 

Figure 2. Rolling Mean Squared Error (MSE): (a) Black-Scholes Model; (b) GARCH model; (c) Heston 

Model; (d) Merton Jump Diffusion Model 

Figure 2(a) shows that the Black-Scholes model's rolling mean squared error (MSE) remains stable 

during calm periods but spikes significantly during volatile times, such as early-2020 and mid-2021, due 

to its constant volatility assumption. Figure 2(b) illustrates that the GARCH model maintains low MSE 

with only minor spikes during extreme volatility, reflecting its robustness in capturing market dynamics 
and volatility clustering. Figure 2(c) reveals that the Heston model has higher MSE during volatile 

periods, indicating limitations in handling sudden market changes despite accounting for stochastic 

volatility. Figure 2(d) shows that the Merton Jump Diffusion model struggles with accuracy in both 
volatile and stable periods, with consistently high MSE and significant spikes during market turbulence. 

This consistent poor performance highlights the Merton model's inadequacy in capturing market 

dynamics accurately across varying conditions. 

4.  Discussion 

4.1.  Interpretation of Findings 

The results of this study provide significant insights into the predictabilities of various models for option 

pricing. The GARCH model emerged as the most effective, consistently outperforming other models 
across multiple performance metrics. Its lowest MSE, MAE, RMSE, and CV MSE, along with the 

highest R² value, indicate its superior accuracy and robustness in capturing volatility clustering in 

financial markets. This finding aligns with the inherent design of the GARCH model, which effectively 
models time-varying volatility, a common characteristic in financial data. The GARCH model’s ability 

to dynamically adjust to changes in market volatility makes it particularly suited for options pricing, 

where accurate volatility prediction is crucial. The Tuned Neural Network also demonstrated strong 
performance, showcasing the effectiveness of optimized hyperparameter tuning in managing complex 

non-linear relationships. Its ability to capture intricate patterns in data underscores the potential of 

machine learning techniques in financial modeling. The strong performance of other machine learning 

models like Random Forest, Gradient Boosting, and LSTM further confirms their capability to handle 
the non-linearities and dependencies in financial datasets, making them valuable tools for option pricing. 

In contrast, traditional models such as the Merton, Black-Scholes, and Heston models showed higher 

errors and lower R² values. Which indicates their respective limitations in predicting option prices under 
market conditions which differ from their theoretical assumptions. The Merton model exhibited the 

highest errors and the lowest R² value, reflecting its struggle to capture sudden jumps and complex 

market dynamics effectively. While traditional models have a solid theoretical foundation, they may not 

be as adaptable to the nuances of real-world financial data as more flexible machine learning models. 

4.2.  Comparison with Previous Studies 

Our findings mostly align with previous studies that emphasize the superiority of advanced ML models 

in capturing market complexities. Ruf and Wang [5] demonstrated the potential of neural networks in 
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modeling option prices, and our results further corroborate their conclusions by showing the strong 

performance of the Tuned Neural Network. This consistency indicates that machine learning models, 

when properly tuned, can provide significant advantages over almost all traditional models in terms of 

predictive accuracy and adaptability.  
Similarly, the limitations of traditional models, as highlighted in studies by Feng et al. [7], are evident 

in our findings. The Black-Scholes model, despite its widespread use, underperformed compared to 

machine learning approaches. This is consistent with the literature that criticizes the Black-Scholes 
model for its assumption of constant volatility, which is often unrealistic in financial markets. The 

Heston model, although introducing stochastic volatility, also showed limitations, particularly during 

periods of high market volatility. Our study supports the notion that while these models have theoretical 

elegance, their practical application may be limited by their underlying assumptions. 
The performance of the GARCH model in our study aligns with the findings of Bollerslev [4], who 

highlighted the model’s effectiveness in capturing volatility clustering. This reinforces the importance 

of using models that can adapt to changing market conditions. Additionally, the strong performance of 
the Tuned Neural Network and other machine learning models echoes the findings of Hutchinson et al. 

[12], who first proposed using neural networks for option pricing, demonstrating their potential to 

surpass traditional models. 

5.  Conclusion 

The GARCH model exhibits the lowest error metrics and the highest R² value, highlighting its forte in 

capturing volatility clustering. Machine learning models, particularly the Tuned Neural Network, also 

demonstrate strong predictabilities, effectively managing complex non-linear relationships in financial 
data. In contrast, traditional models like the Black-Scholes, Heston, and Merton Jump-Diffusion models 

show higher errors and lower R² values, reflecting their limitations in handling real-world market 

dynamics. Based on our comparative results, we hypothesize that an ensemble model combining our 
Tuned Neural Network and the GARCH model could further enhance predictive accuracy. To validate 

this hypothesis, we constructed an ensemble model that integrates the strengths of both approaches. Due 

to page constraints, detailed results of this ensemble model are not included here. Interested readers are 

welcome to email me for access to this supplementary material. Future works will consider using at-the-
money (ATM) options and varying strike prices to better capture the implied volatility smile. 

For those interested in a more comprehensive exploration, the extended version of this research 

includes a detailed literature review of traditional models and their recent advancements, a thorough 
discussion on research gaps and limitations of these models under varying market conditions, and in-

depth descriptions of feature engineering and data preprocessing techniques used in the study. It also 

covers extensive descriptions of mathematical models with their equations and parameter estimations, 
the implementation of Monte Carlo simulations for complex models like Heston and Merton, detailed 

implementation and hyperparameter tuning of machine learning models, and a comprehensive set of 

results with comparison tables, figures illustrating model performance metrics, rolling MSE, and model 

loss plots. Additionally, the extended version includes a sensitivity analysis of model parameters and 
their impact on predictive accuracy. Readers interested in these detailed sections, comparisons, and 

figures can email me for access to the extended versions of this research as well as future work, or 

alternatively, contact me via ResearchGate. Welcome for any discussion, suggestions or corrections! 
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