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Abstract. In the field of artificial intelligence, the requirements of models that can adeptly 

explore informative features of complex data sets has led to the emergence of advanced neural 

network architectures. Beyond the perceptron-based architectures that are currently in 

widespread use, a variety of innovative and cutting-edge designs have been proposed.  This paper 

thoroughly explores the critical role of Kolmogorov-Arnold Networks (KAN) in overcoming the 

limitations of traditional Multilayer Perceptron (MLP) models, particularly highlighting KAN’s 

significant advantages in handling complex nonlinear and high-dimensional data. By analyzing 

the mathematical foundations and neural network architecture of KAN, and comparing it with 

MLP, the paper demonstrates KAN’s outstanding performance in time series analysis and image 

classification. The research indicates that KAN has distinct advantages in addressing high-

dimensional nonlinear data. The paper also summarizes the current research progress on KAN 

and discusses its enormous potential in future machine learning and real-world applications, 

pointing out possible future research directions. 

Keywords: Kolmogorov-Arnold network, Time series analysis, Multilayer perceptron, Image 

classification. 

1.  Introduction 

An artificial neural network (ANN) is a computational model inspired by the biological neural networks 

found in the brain. It consists of layers of artificial neurons, where each neuron simulates a biological 

neuron by taking inputs, applying weights, and passing them through an activation function to produce 

an output. Through a process called learning, ANNs adjust these weights to perform tasks such as 

classification, pattern recognition, and prediction. The traditional ANN has limited representational 

power, only capable of solving linearly separable problems and unable to handle complex nonlinear 

relationships. Additionally, due to its simple structure, typically comprising only input and output layers 

without depth or hierarchy, it performs poorly on complex tasks. Researchers found that by introducing 

hidden layers and using nonlinear activation functions based on the perceptron, ANNs can solve 

problems that are not linearly separable. This led to the emergence of the Multilayer Perceptron (MLP), 

as they can model more complex patterns and features, thus increasing the depth and complexity of the 

model. Moreover, MLPs can handle complex nonlinear problems, which are common in classification 

and regression tasks. 
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In recent years, ANNs have gained widespread popularity and have proven to be invaluable for tasks 

such as classification, clustering, pattern recognition, and prediction across many disciplines. As a key 

component of machine learning (ML), ANNs have driven significant advances in areas such as speech 

recognition, natural language processing, and autonomous systems. 

MLP is a typical representative of neural networks, the neurons in each layer of MLP are fully 

connected with all the neurons in the previous layer to form a fully connected structure. Additionally, 

MLP uses nonlinear activation functions in the neurons of the hidden layer and the output layer. And it 

can be trained by Backpropagation algorithm. Theoretically, MLP has the ability to approximate 

arbitrary continuous functions as long as the network has enough layers and neurons. This makes MLP 

widely used in the fields of classification, regression, pattern recognition, time series prediction and so 

on. 

However, is the MLP the best structure in the field of neural networks? Does the MLP have no 

drawbacks? As MLPs continued to be applied and the demands of the real world increased, some of the 

limitations of MLPs became apparent. 

Due to the fully connected structure of MLPs, where each neuron in a layer is connected to all neurons 

in the previous layer, a large number of parameters are required for training. When dealing with high-

dimensional data, the number of parameters increases significantly. Because MLPs have numerous 

parameters, especially in high-dimensional data scenarios, they are prone to overfitting, which increases 

computational complexity. To avoid overfitting, regularization techniques, Dropout, and other methods 

are typically employed, but these approaches cannot completely solve the problem. Although MLP can 

theoretically approximate arbitrary continuous functions, in practice, it requires a very deep network 

and a large number of neurons, which leads to the complexity of training and the consumption of 

computational resources. In addition, the design of MLP relies more on experience and experimentation 

and lacks mathematical basis in explaining its ability to handle complex data. 

To better address the various limitations of MLPs and more efficiently meet the increasing new 

demands in practical applications, a new neural network structure becomes especially important.  

This paper proposes a very efficient alternative to MLP, Kolmogorov-Arnold Networks (KANs) [1]. 

Whereas MLPs are inspired by the universal approximation theorem, KANs are inspired by the 

Kolmogorov-Arnold representation theorem [2]. Like MLPs, KANs have fully-connected structures. 

However, for accuracy, much smaller KANs can achieve comparable or better accuracy than much 

larger MLPs in data fitting and PDE solving [3]. For application, KANs are shown to be useful 

collaborators helping scientists (re)discover mathematical and physical laws [3]. This paper will give an 

outlook on the theoretical architecture of KAN, specific applications, recent developments, and future 

directions of KAN. 

Through this paper, readers will have a comprehensive and deep understanding of the network 

structure of KAN, the current status of applications, cutting-edge advances, existing major research 

results, and future development trends. Readers can easily identify the unsolved problems and research 

gaps in the current research on KAN, providing new directions for subsequent research and applications.   

2.  Theoretical Foundations 

2.1.  Kolmogorov–Arnold Theory 

Kolmogorov pointed out that any continuous multivariable function can be represented as a 

superposition of a finite number of continuous univariate functions [4]. 

 𝑓 (𝑥1, . . . , 𝑥𝑛)  =  ∑ 𝛷𝑞
2𝑛+1

𝑞=1
(∑ ∅𝑞,𝑝

𝑛
𝑝=1

(𝑥𝑝))  (1) 

Here, ∅𝑞,𝑝 are univariate functions mapping each input variable 𝑥𝑝 such ∅𝑞,𝑝: [0, 1] → R, and 𝛷𝑞: R 

→ R, univariate functions. This theorem's discovery has significant implications for neural networks 

and mathematics. 
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It demonstrates that, even in high dimensional spaces, smaller univariate functions can be used to 

generate complicated multivariate functions, which simplifies the function representation problem. 

Additionally, it offers a novel way to approximate multivariate functions by the superposition of 

univariate functions. This strategy broadens the applicability of approximation theory and offers fresh 

concepts and techniques for handling high-dimensional approximation problems. 

More flexible neural network design is theoretically supported by the Kolmogorov-Arnold theorem. 

The flexibility and expressiveness of the model are increased by KAN, which uses learnable univariate 

functions in place of fixed linear parameters, which are the weights in typical neural networks. It makes 

neural networks more adept at handling intricate nonlinear interactions and proficient at tasks like 

symbolic regression, partial differential equation solution, and data fitting. 

2.2.  Structural Comparison 

While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation 

functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced 

by a univariate function parametrized as a spline [5].  

In traditional MLPs, neurons use fixed activation functions, which remain unchanged during the 

training process. This limits the model's ability to capture complex and diverse data patterns, especially 

when dealing with multimodal data. Fixed activation functions struggle to describe the complex 

relationships between different modes, leading to a decline in model performance. 

By parameterizing each weight as a spline function, KANs can dynamically adjust and flexibly 

perform nonlinear transformations based on input data. This flexibility allows KANs to better identify 

subtle differences in the data and adopt different nonlinear strategies in different data regions. The 

learnable activation functions enable KANs to adaptively adjust weights during training, enhancing the 

model's generalization ability and its capacity to handle complex and diverse data, thereby improving 

prediction accuracy. 

3.  KAN-based Applications 

After reading about KANs, their operation, and possible practical uses, one can see how widely 

applicable KANs are to a variety of fields, such as real-time data processing, engineering, and scientific 

research. In fact, problems like high-dimensional data analysis, symbolic regression, and complex 

function approximation are especially well-suited for KANs. These tasks are relevant in domains like 

financial forecasting, where KANs can accurately predict market movements and describe nonlinear 

relationships. KANs are also excellent at solving partial differential equations (PDEs), which makes 

them a useful tool for simulating and optimizing complex systems in engineering and science [6]. 

Moreover, KANs have demonstrated potential in continuous learning, enabling models to learn new 

information while retaining previously learned knowledge. This feature is essential for applications that 

need to be updated and improved all the time, like software with adaptive user interfaces, real-time 

infrastructure monitoring, and automated trading systems. 

In conclusion, KANs offer a flexible and effective method for addressing a broad variety of 

challenging issues in diverse fields, and they have the potential to completely transform a number of 

sectors by improving the precision, interpretability, and flexibility of predictive models. 

3.1.  KAN-based Time Series Analysis 

Time series analysis is essential for forecasting future observations by analyzing historical data, such as 

predicting climate changes from past meteorological trends. It also helps in detecting anomalies, vital 

for cybersecurity, equipment failure detection, and medical monitoring, where early detection of 

irregularities in patient data can prevent health risks. Additionally, time series analysis explores causal 

relationships between variables, crucial for hypothesis testing and policy evaluation, and optimizes 

resource utilization in fields like traffic management by analyzing historical data for better future 

planning. 
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In a previous work, researchers find that KANs can leverage their adaptive activation functions for 

enhanced predictive modeling [7]. Following that researchers have performed an analysis of KANs for 

satellite traffic forecasting. The results highlighted several benefits of KANs, including superior 

forecasting performance and greater parameter efficiency [7]. In addition, researchers find that in 

meteorological data, KANs can accurately capture seasonal and trend changes, dynamically adapting to 

changes in data patterns during time series analysis. In the field of energy consumption forecasting, 

KANs are used to predict demand for electricity or other forms of energy, optimize scheduling, and 

reduce energy costs. In financial markets, KANs can capture complex nonlinear fluctuations in trading 

volumes and stock prices, providing more accurate predictions for investment strategies. 

Previous models for time series analysis have several shortcomings: (1) Linear Assumptions: 

Traditional time series models, such as Autoregressive Integrated Moving Average Model (ARIMA), 

are based on linear assumptions, presuming future values are a linear combination of past values. 

However, real-world data often exhibit complex nonlinear relationships, such as those seen in financial 

markets and meteorological data, challenging the accuracy of these models. (2) Fixed Structure: 

Traditional models typically have a fixed structure that cannot dynamically adjust to changes in data, 

leading to a decline in forecasting performance when data patterns shift. (3) Challenges with 

Multivariate Data: Traditional models struggle with multivariate data, as increasing the number of 

variables raises model complexity and computational cost, making it difficult to identify complex inter-

variable relationships. (4) Dependency Handling Limitations: Traditional models are limited in handling 

long-term and short-term dependencies, usually managing only short-term dependencies effectively. 

Increasing model complexity to address long-term dependencies can lead to overfitting. 

To address these issues, researchers have proposed applying KANs in the field of time series 

forecasting, achieving remarkable results. KANs have several advantages: (1) Handling Nonlinear 

Relationships: KANs are capable of representing complex multivariate continuous functions as 

compositions of univariate functions, making them particularly effective in capturing nonlinear 

relationships in time series data, especially in multivariate forecasting like meteorological variables or 

stock prices. (2) Adaptive Optimization: KANs can automatically adjust network structure and 

activation functions based on input data patterns, allowing for adaptive optimization across different 

phases, preventing overfitting or underfitting, and improving robustness and accuracy in predictions. 

Interpretability: KANs offer greater interpretability in time series forecasting by analyzing parameter 

changes in univariate functions, providing an intuitive understanding of the model's decision-making 

process, crucial in fields like financial forecasting and medical monitoring. (3) Robustness to Noise: 

KANs demonstrate strong robustness when dealing with noise and outliers, maintaining high predictive 

accuracy and stability even in the face of sudden events or unstable fluctuations, making them reliable 

in rapidly changing markets or complex environments. 

Although KANs have demonstrated many advantages in the field of time series analysis, they still 

present some drawbacks and challenges: (1) Training Instability: KANs can experience instability 

during the training process, such as gradient explosion or vanishing, especially when handling time 

series data with long-term dependencies. This can make the model difficult to converge, ultimately 

affecting prediction accuracy. (2) Resource-Intensive Training: KANs require continuous optimization 

of their learnable univariate functions during training, resulting in relatively long training times and 

significant computational resource consumption, making them less favorable for large-scale time series 

data. (3) Dependency on Parameter Tuning: The performance of KANs is highly dependent on 

parameter settings. Selecting the appropriate parameters, such as activation functions, network layers, 

and nodes, often requires extensive experimentation and fine-tuning, increasing the model’s complexity 

and usage difficulty. 

To address these drawbacks, this paper discusses potential improvements and applications of KANs 

in the field of time series analysis. Firstly, optimizing algorithms and introducing regularization 

techniques will enhance the model's training stability, particularly when dealing with long-term 

dependencies. Secondly, developing more efficient computational methods or hardware accelerators 

will help reduce training time and computational resource consumption, making KANs more suitable 
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for large-scale datasets. Lastly, the introduction of automated hyperparameter optimization techniques 

will simplify the parameter selection process, reduce the complexity of use, and make KANs more 

accessible for widespread application. 

3.2.  KAN-based Image Classification 

Image classification plays a crucial role in scientific research, particularly in the fields of computer 

vision and artificial intelligence. By assigning images to specific categories and aiding in the automatic 

recognition and analysis of image content, it has found extensive applications in various domains such 

as medical image analysis, remote sensing, autonomous driving, and security surveillance. By enhancing 

classification accuracy, image classification technology has facilitated scientific discoveries and 

technological advancements, providing essential tools for solving complex visual tasks. Moreover, 

image classification has driven the development of deep learning technologies and has contributed to 

the progress of other artificial intelligence applications. 

Additionally, in some studies and experiments, KANs have been effectively used in the hyperspectral 

image classification, which is essential for military, agricultural, and environmental remote sensing 

applications [8]. KANs, by analyzing hyperspectral images, can help monitor the spread of pollutants, 

vegetation health, and changes in water quality, providing scientific evidence for environmental 

protection. In agriculture, KANs are used for monitoring crop types and pest infestations, helping 

farmers make better planting decisions and increase yields. These applications demonstrate the 

advantages of KANs in handling high-dimensional and complex spectral information and support 

precise analysis in various practical fields. 

Previous models for image classification have several shortcomings. (1) Previous models have 

insufficient capacities for feature extraction. The problem arises when large numbers of photos are 

concerned. It becomes a too difficult problem to find features from them [9]. (2) The adaptability of 

models is insufficient. Convolutional Neural Networks (CNNs) and vision transformers (ViTs) have 

shown excellent capability in complex hyperspectral image (HSI) classification. However, these models 

require a significant number of training data and are computational resources [10]. (3) Conventional 

methods have inadequate handling of nonlinear relationships. Traditional methods mainly relied on 

handcrafted features and linear models, which struggled to capture the complex nonlinear relationships 

within image data, limiting classification accuracy. 

To address these existing issues, KANs have several advantages. (1) Fast Convergence. KAN and 

MLP achieved the same accuracy in the first epoch. In the second epoch, KAN's accuracy quickly 

reached 96% and remained stable until the end. However, MLP's accuracy only reached 95% in the 

second epoch and increased to 96% in the third epoch. Specific experimental images can be found [9]. 

This revealed that KAN attained high accuracy slightly more quickly than MLP, but both ultimately 

reached similar accuracy, suggesting there is not a significant difference between the two for remote 

sensing classification tasks [9]. (2) Efficient parameter utilization. KAN can achieve high classification 

accuracy while substantially reducing the number of training parameters required. This efficiency makes 

the model less heavy, which makes it better for situations where computational resources are limited. 

(3) Reduced overfitting risk. Due to KAN's parameter efficiency and smaller architecture, it is less prone 

to overfitting compared to traditional MLPs, especially when handling high-dimensional data. (4) 

Improved interpretability and precision. KAN makes use of learnable activation functions that are based 

on wavelets or B-splines, which are more effective at capturing intricate spectral-spatial patterns. 

Improved interpretability and increased classification accuracy are the outcomes of this, particularly in 

hyperspectral image classification tasks. (5) Robust generalization capability. KAN can easily conform 

to intricate data structures. Its adaptable activation functions provide to better results across a variety of 

datasets, especially when managing intricate spectral-spatial correlations, by efficiently capturing multi-

scale information in the data. 

Although KANs have demonstrated many advantages in the field of image classification, they still 

present some drawbacks and challenges: (1) Interpretability limitations. Despite these results, this study 

acknowledges several shortcomings. One major limitation is the lack of evidence about the 
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interpretability of KAN layers, which is crucial for understanding the decision-making process of the 

model [9]. (2) Model complexity. KAN has a somewhat complicated structure, especially when learning 

activation functions such as B-splines or wavelets [11]. This makes developing and putting the model 

into practice more challenging. Furthermore, as comparison to simpler models, this complexity could 

make KAN less intuitive to use and more difficult to implement in specific application circumstances. 

This experiment indicates that KAN layers can achieve high accuracy with fewer training epochs, 

even when the number of nodes is significantly reduced and this proved the efficiency of the KAN layer 

[10]. Future research should address these issues by improving KAN’s interpretability and investigating 

more effective integration solutions for various remote sensing applications [9]. 

4.  Discussion 

4.1.  Current Research Progress 

Model Extensions: While depth-2 representations were the main focus of early KAN research, more 

recent work has expanded the network's structure to accommodate arbitrary widths and depths. This 

enhanced version, also known as B-Spline KAN, increases the expressiveness and versatility of the 

model by using B-Spline functions as learnable activation functions. 

Application Domains: KAN has been effectively used in a number of domains, including as financial 

market analysis, hyperspectral image classification, and time series forecasting. It has demonstrated 

notable benefits, especially when managing multivariate dependencies and intricate nonlinear 

interactions. For instance, KAN efficiently collects both spectral and spatial data in hyperspectral image 

classification, leading to greater classification accuracy. 

Performance and Challenges: KAN has trouble during training even if it performs well in a variety 

of applications. For instance, when working with long-term dependencies, the intricate structure of KAN 

may result in problems like gradient ballooning or disappearing. KAN can only be used on large-scale 

datasets because it takes a lot of processing power and lengthy training periods. Researchers are looking 

into automated hyperparameter tweaking, regularization strategies, and optimization algorithms to 

overcome these issues. 

Comparing KAN with Other Models: Research indicates that in some applications, particularly those 

where high accuracy and interpretability are essential, KAN performs better than conventional MLPs 

and CNNs. But parameter selection plays a major role in how well KAN performs, especially when it 

comes to selecting activation functions and network design, which makes using the model more 

challenging. 

4.2.  Future Prospect 

Creation of Hybrid Models: While KAN has demonstrated impressive performance in several 

applications, hybrid models might be created by merging it with other deep learning models (like 

recurrent or convolutional neural networks). By combining the advantages of several network topologies, 

these hybrid models may be able to enhance performance on intricate datasets. Future studies could 

examine the efficient integration of KAN with other models and assess their performance on a range of 

tasks. 

Extension of Application Domains: Although KAN has shown promise in domains such as image 

classification and time series forecasting, it remains possible to extend its application to other fields. 

Subsequent investigations may examine the application of KAN in developing domains including 

autonomous driving, genetic data analysis, and natural language processing, evaluating its efficacy in 

these intricate situations. KAN might have even more usefulness and influence if its application domains 

were expanded. 

Integration of Wavelets and additional Functions: Wavelet-based KAN variations have been studied 

so far; future study could look into ways to integrate additional functions (such polynomial or Fourier 

transformations) to increase the capabilities of KAN. KAN might demonstrate increased versatility and 
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adaptability when managing a broader range of jobs and data types by integrating several mathematical 

techniques. 

5.  Conclusion 

This paper provides a comprehensive and in-depth exploration of KAN, highlighting its advantages in 

handling complex nonlinear data through a comparison with traditional MLP. The paper elaborates on 

the mathematical foundations of KAN, its neural network architecture, and its application in fields such 

as time series analysis and image classification. As an emerging neural network architecture, KAN 

excels in processing high-dimensional, complex nonlinear, and dynamic data through learnable 

activation functions and parameterized spline functions. It effectively addresses nonlinear relationships 

in financial market fluctuations and meteorological data and is capable of extracting and distinguishing 

high-dimensional features in hyperspectral image classification. Based on the Kolmogorov-Arnold 

representation theorem, KAN can decompose complex multivariable functions into combinations of 

univariate functions, thereby better capturing nonlinear relationships in data. This makes KAN suitable 

for complex economic models, nonlinear dynamic behavior in physical systems, and multivariable 

analysis in climate change predictions or financial markets. 

However, given that KAN is relatively new, it still faces certain limitations, such as insufficient 

interpretability and high computational demands. Future research should focus on improving KAN’s 

interpretability, expanding its application domains, and exploring hybrid models. The paper suggests 

that as these challenges are gradually addressed, KAN is likely to gain broader and deeper applications 

across various fields, further advancing the development of machine learning. 
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