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Abstract. As global climate change intensifies, accurate weather forecasting is increasingly 

crucial for sectors such as agriculture, energy management, and environmental protection. 

Traditional methods, which rely on physical and statistical models, often struggle with complex, 

nonlinear, and time-varying data, underscoring the need for more advanced techniques. This 
study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the 

Delhi region, using historical meteorological data from 1996 to 2017. We employed both direct 

and indirect methods, including comprehensive data preprocessing and exploratory analysis, to 

construct and train our model. The CNN component effectively extracts spatial features, while 

the LSTM captures temporal dependencies, leading to improved prediction accuracy. 

Experimental results indicate that the CNN-LSTM model significantly outperforms traditional 

forecasting methods in terms of both accuracy and stability, with a mean square error (MSE) of 

3.26217 and a root mean square error (RMSE) of 1.80615. The hybrid model demonstrates its 

potential as a robust tool for temperature prediction, offering valuable insights for meteorological 

forecasting and related fields. Future research should focus on optimizing model architecture, 

exploring additional feature extraction techniques, and addressing challenges such as overfitting 

and computational complexity. This approach not only advances temperature forecasting but also 

provides a foundation for applying deep learning to other time series forecasting tasks. 

Keywords: Time series forecasting, convolutional neural networks (CNN), long short-term 

memory networks (LSTM). 

1.  Introduction 

As global climate change intensifies, accurate weather forecasting becomes increasingly crucial in 
agriculture, energy management, environmental protection, and daily life. Weather prediction accuracy 
directly impacts socio-economic development and quality of life. Traditional methods, which primarily 
rely on physical models and statistical approaches, face limitations in handling complex nonlinear and 
time-varying features, especially under the increased uncertainty brought by climate change [1]. 

In recent years, deep learning techniques have shown strong potential in weather prediction, 
particularly in managing complex nonlinear relationships and time series data [2]. For instance, 
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Convolutional Neural Networks (CNN) effectively capture spatial patterns in weather data, while 
Recurrent Neural Networks (RNN) and Long Short-Term Memory Networks (LSTM) excel in 
processing meteorological time series, capturing time-dependence in variables [3]. Despite significant 
progress in areas like rainfall and temperature trend prediction, single models struggle with high-

dimensional, multi-scale weather data. Consequently, researchers are exploring hybrid models 
combining CNN and LSTM to enhance weather prediction performance [4]. This paper focuses on 
analyzing and predicting historical temperature data in Delhi, India, using a CNN-LSTM hybrid model. 
We conducted comprehensive data preprocessing and exploratory analysis, followed by constructing 
and training the model. The experimental results demonstrate the model’s strong performance in 
prediction accuracy and stability, highlighting its potential in weather forecasting. This research 
provides insights into the effectiveness of the CNN-LSTM model in meteorological time series data and 
supports the broader application of deep learning in weather prediction. 

2.  Related Work 

In time series forecasting, traditional models like Autoregressive Moving Average (ARMA) and 
Autoregressive Integrated Moving Average (ARIMA) have long been standard due to their effectiveness 
in handling linear and stationary data. These models, along with Exponential Smoothing, have seen 

extensive use in fields such as economic forecasting and energy consumption prediction, particularly 
with stable, cyclical data [1]. However, their linear assumptions limit their performance when dealing 
with nonlinear, complex, and time-varying data [2, 3]. 

The advent of Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks 
addressed some of these limitations by capturing long-term dependencies in sequential data, proving 
effective in domains like speech recognition and text generation [3, 4]. Despite their strengths, LSTMs 
may struggle with intricate local patterns and can be prone to overfitting, especially with limited data or 
noisy feature [5].Conversely, Convolutional Neural Networks (CNNs), originally dominant in computer 

vision, have shown promise in feature extraction from one-dimensional time series data. Their 
application to time series classification, such as ECG signal classification, has demonstrated significant 
accuracy improvements [6].  

To address these issues, hybrid models combining CNNs and LSTMs have been developed, 
leveraging CNN's local pattern recognition with LSTM's temporal modeling capabilities. This CNN-
LSTM architecture has shown effectiveness in tasks like precipitation forecasting, offering improved 
accuracy and robustness across varying conditions [7]. However, these models also introduce increased 

computational complexity and risk of overfitting, especially with high-dimensional or noisy data [4]. 
In weather forecasting, particularly in regions with complex climates like Delhi, deep learning 

models have been increasingly employed for predicting elements such as temperature, rainfall, and wind 
speed [8]. This study focuses on developing a CNN-LSTM model for temperature forecasting in Delhi, 
aiming to capture the complex patterns in the region’s climate data more effectively than existing 
methods. The model's performance will be evaluated using metrics like MSE, with discussions on 
potential challenges such as overfitting and computational demands. 

3.  Prediction Model 

3.1.  Dataset  
The dataset used in this study is the Delhi Temperature Dataset, containing temperature records over a 

specified period, recorded daily or hourly. It includes features like temperature and weather conditions. 
The training set consists of 7,300 samples, covering around 20 years of historical data, used to train the 
CNN-LSTM model for temperature prediction.  
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3.2.  Data Preprocessing 
Data preprocessing is a critical step in model training. When creating time series data, it was 
standardized to the range of [-1, 1] using the MinMaxScaler, a method widely recognized for its 
effectiveness in normalizing data [1]. The mathematical formula is as follows.  

                     𝑥′ = 2 ⋅
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
− 1                    (1) 

This step accelerated the model's convergence. Initially, the temperature data is normalized to ensure 
that all features are on the same scale. We apply Min-Max normalization, scaling the data to a range 
between -1 and 1, which accelerates model training and improves convergence. Next, missing values in 

the dataset are addressed, either by imputing with the mean of the corresponding column or by removing 
the affected samples [2]. Additionally, feature engineering is performed to generate time-related features 
(e.g., season, month) that enhance the quality of the input data for the model [5]. 

3.3.  CNN-LSTM Model  

Figure 1. Structure of CNN-LSTM Model 

The proposed model combines the strengths of one-dimensional convolutional neural networks and long 
short-term memory networks (LSTM) to predict future temperatures. This architecture in Figure 1 
effectively captures both local features [6] and long-term dependencies [3] in time series data, enhancing 
prediction accuracy. The structure’ s parameters are presented in Table 1. 

Table 1. All the layers with specific parameters. 

Layer Param 

Conv1D(filters=256) 768 
Conv1D(filters=128) 65664 
LSTM (units=100) 756800 
LSTM (units=100) 80400 

LSTM (units=100) 80400 
LSTM (units=100) 80400 

Bidirectional LSTM 235520 
Dense (units=100) 25700 
Dense (units=1) 101 

A. Convolutional Layer 
The first Conv1D layer employs 256 convolutional filters, each with a kernel size of 2. Utilizing the 

ReLU activation function, this layer introduces non-linearity to the model, allowing it to efficiently 
extract local features from the input sequence. The input consists of 30-time steps, each containing one 
feature, making this layer crucial for capturing initial patterns in the data. The second Conv1D layer 

continues the feature extraction process with 128 convolutional filters. By further refining and extracting 
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higher-level features, the ReLU activation function ensures the model's ability to capture more complex 
patterns within the time series data. 

B. RepeatVector Layer 

Next, the RepeatVector layer duplicates the flattened feature vector 30 times. This repetition ensures 
that the features extracted from the previous layers are available at each time step in the subsequent 
LSTM layers, facilitating the model’s ability to learn and process temporal dependencies effectively. 

C. Bidirectional LSTM Layer 

The model features a series of LSTM layers designed to capture complex temporal dependencies 
within the input sequence. The initial LSTM layer, with 100 units, captures long-term dependencies and 
returns outputs for each time step, which subsequent layers build upon. To prevent overfitting, a Dropout 
layer is applied, randomly dropping 20% of neurons during training. Additional stacked LSTM layers 
further enhance the model's ability to understand intricate patterns in the data. A Bidirectional LSTM 
layer is also included, processing data in both forward and backward directions to capture dependencies 
from both perspectives, thereby improving predictive performance 

3.4.  Model Training and Optimization 

 

Figure 2. Process of model training and optimization 

The model training process (see Figure 2) begins with splitting the dataset into training and testing sets 
to ensure the model's generalization ability. Typically, the data is divided proportionally, allowing the 
model to be validated on unseen data. In this study, the temperature data from the previous 30 days is 
used to predict the temperature of the next day. The training steps include forward and backward 
propagation from equation (1) (2) (3) and (4), where the model parameters are adjusted by minimizing 

the loss function ℒ(𝜃). EarlyStopping callback is employed to halt training when the training loss does 
not decrease over seven consecutive epochs, thereby preventing overfitting. 

                                                         𝑚 𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃ℒ(𝜃𝑡)                                                            (2)

                                                         𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(∇𝜃ℒ(𝜃𝑡))
2

                                                          (3)

                                                               �̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 ,  �̂�𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡                                                                     (4)

                                                                  𝜃𝑡+1 = 𝜃𝑡 − 𝜂
�̂�𝑡

√�̂�𝑡 + 𝜖
                                                                         (5)

 

Where: 𝑚𝑡 and 𝑣𝑡 are the first and second moment estimates., 𝛽1 and 𝛽2 are the exponential decay 

rates for these estimates., 𝜂 is the learning rate., 𝜖 is a small constant to prevent division by zero. 
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4.  Results 

A. Loss Functions 

The choice of loss function has a significant impact on the prediction accuracy of the model. In this 
experiment, we use both Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) from 
equation (6) and (7) as loss functions below to evaluate the model's performance. MSE is commonly 
used to measure the discrepancy between predicted and actual values [7], making it suitable for tasks 
where we aim to minimize large errors. RMSE, on the other hand, provides a more interpretable metric 
by taking the square root of MSE, which puts more emphasis on larger errors. The combination of these 
two loss functions [8] helps in obtaining a more robust evaluation of the model's predictive capabilities. 

Recent studies [9], [10], and [11] support the effectiveness of these methodologies in various 

temperature prediction tasks. 

                                                                       MSE =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − �̂�𝑖)2                                                                 (6) 

                                                                             𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                                         (7) 

B. Model Training Strategy 

During model training, hyperparameters such as learning rate 𝜂 and batch size 𝐵 are fine-tuned to 

optimize the model's performance. The learning rate 𝜂𝑡 can be dynamically adjusted using learning rate 
schedules in equation (8). 

                                                                         𝜂𝑡 = 𝜂0 ⋅
1

1 +  decay ⋅ 𝑡
                                                               (8) 

The training process begins with an initial learning rate, denoted as 𝜂0, and a decay factor applied 

over time, where 𝑡 represents the current epoch or iteration. The maximum number of training epochs, 

𝑇, is set to 300. However, this number may be reduced through an early stopping mechanism. Early 
stopping is triggered if the validation loss (ℒval ) fails to improve over a predefined number of epochs, 

known as the patience period (𝑝). Specifically, training is halted if ℒval  at epoch 𝑡 is greater than the 

minimum ℒval  observed during the previous 𝑝 epochs. Throughout the training process, detailed logs 
are maintained to monitor progress. 

C. Model Performance Evaluation 
We plot the change curve of the loss function during the training process to observe the model's 

convergence. The results indicate that both loss functions decrease rapidly in the early stage of training 
and then stabilize, suggesting that the model successfully learns the patterns in the data, which improves 
the prediction accuracy. 

To comprehensively evaluate the model's performance, we calculate the mean square error (3.26217) 
and root mean square error (1.80615). The results demonstrate that the CNN-LSTM model performs 
well on these metrics, with high prediction accuracy and stability. The prediction curve's high similarity 
to the test curve further supports the model's effectiveness in temperature prediction. 
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Figure 3. The prediction curve and test curve. 

5.  Conclusion 

In this study, we employed an optimized CNN-LSTM model to predict temperature time series in Delhi, 
India. The model effectively captures complex spatio-temporal features, significantly improving 

prediction accuracy. By thoroughly preprocessing and analyzing historical meteorological data from 
1996 to 2017, the CNN-LSTM model leverages the feature extraction capabilities of CNNs and the time 
series processing strengths of LSTMs. The results show that our model outperforms traditional time 
series prediction methods, offering higher accuracy and stability.However, the study acknowledges 
certain limitations, such as the need to improve prediction accuracy under extreme weather conditions 
and enhance dataset representativeness. Future research should focus on optimizing the model 
architecture, exploring better feature extraction techniques, and applying the model to a broader range 
of time series forecasting tasks. Additionally, addressing computational complexities and overfitting 

through regularization techniques will be crucial for improving model stability and generalization. 
In summary, this research offers an effective methodology for temperature prediction in Delhi and 

lays the groundwork for future investigations in related areas, with the CNN-LSTM framework expected 
to advance multi-disciplinary time series forecasting applications. 
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