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Abstract. Deep learning has revolutionized the field of machine learning with its ability to 

discern complex patterns from voluminous data. Despite the success of Multi-Layer Perceptrons 

(MLPs) and Convolutional Neural Networks (CNNs), there is an ongoing quest for architectures 

that offer higher expressiveness with fewer parameters. This paper focuses on the Kolmogorov-

Arnold Networks (KANs) and Convolutional Kolmogorov-Arnold Networks (CKANs), which 

integrate learnable spline functions for enhanced expressiveness and efficiency. This study 

designs a range of networks to compare KANs with MLPs and CKANs with classical CNNs on 

the CIFAR-10 dataset. Moreover, this study evaluates the models based on several metrics, 

including accuracy, precision, recall, F1 score, and parameter count. Based on the experimental 

results, networks with KANs and CKANs demonstrated improved accuracy with a reduced 

parameter footprint, indicating the potential of KAN-based models in capturing complex patterns. 

In conclusion, integrating KANs into CNNs and MLPs is a promising approach for developing 

more efficient and interpretable models, offering a path to advance deep learning architectures. 
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1.  Introduction 

Deep learning is a machine learning method based on artificial neural networks and representation 

learning. Deep learning is used to enable computers to analyze data in a way that mimics the human 

brain, learning the intrinsic patterns and representational hierarchy of sample data so that they can 

recognize complex patterns from large amounts of data and generate accurate insights and predictions.  

In the field of deep learning, there has been continuous exploration of new network structures in 

recent years, among which Kolmogorov-Arnold Networks (KANs) stand out as an intriguing innovation 

[1]. Based on the Kolmogorov-Arnold theorem, KANs differ from traditional Multi-Layer Perceptrons 

(MLPs) by replacing fixed linear weight matrices with learnable spline functions, which makes it 

capable of maintaining good expressive power while requiring a smaller number of parameters [2]. 

Convolutional Neural Networks (CNNs) proposed by LeCun et al. have been widely used in the 

realm of computer vision and have greatly advanced the field due to their ability to process data with 

high dimensionality such as images and videos [3,4]. These networks commonly use linear 

transformations to process image data and may incorporate activation functions in the convolutional 
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layer to help the network discern spatial relationships within data, which considerably reduces the total 

number of parameters required to recognize intricate patterns. 

While CNNs is effective, one notable bottleneck is their reliance on fixed activation functions, which 

may restrict the network's ability to capture complex patterns adaptively. Convolutional Kolmogorov–

Arnold Networks (CKANs) proposed by Alexander allows CNNs gain advantages from adaptability and 

less complex parameterization offered by KANs [5]. Incorporating spline-based convolutional layers, 

as introduced by M. Fey and J. E. Lenssen, enhances the network's capacity to effectively model non-

linear relationships [6]. 

The better interpretability and expressiveness of KANs, and CKANs usually means that it is more 

difficult to optimize them [7]. Since both models fit the objective function by updating the parameters 

in the spline function, the choice of the spline function is critical. However, the selection and 

interpretation of the spline function in different cases is still being investigated. Although KANs and 

CKANs have great expressive potential compared to traditional network structures, they do not 

significantly outperform MLPs and CNNs currently [8]. This paper combines KANs and MLPs, as well 

as CKANs and CNNs, respectively, to investigate different network structures in detail and compare 

their performances with the traditional models. This work aims to find networks that require fewer 

parameters while achieving an accuracy comparable to existing conventional network structures.  

2.  Method 

2.1.  Theoretical foundation of Kolmogorov-Arnold Networks (KANs) 

The essence of KANs lies in their distinctive architectural design which is based on the Kolmogorov-

Arnold representation theorem [1,9]. In contrast to the conventional MLPs which employ fixed 

activation functions at each node, KANs boast an innovative approach by situating learnable activation 

functions along network boundaries. This pivotal transition from static to dynamic node functionalities 

is achieved by eschewing the traditional linear weight matrices in favor of malleable spline functions. 

These splines are meticulously parameterized and fine-tuned throughout the training process, thereby 

endowing the model with an enhanced flexibility and adaptability to intricate data patterns. 

2.2.  Theoretical foundation of convolutional Kolmogorov-Arnold networks (CKANs) 

Convolutional Kolmogorov-Arnold Networks (CKANs) share similarities with their CNN counterparts 

but distinguish themselves primarily in the construction of their convolutional kernels [4]. While CNNs 

utilize a kernel composed of fixed weights, CKANs employ a kernel where each element is a trainable 

nonlinear function leveraging B-Splines. In this paradigm, traditional convolutional layers are 

supplanted by KAN convolutional layers, which, post flattening, may be succeeded by either a KAN or 

an MLP. A defining advantage of Convolutional KANs is their reduced parameter count relative to other 

architectures. This efficiency stems from the inherent capacity of B-Splines to smoothly approximate 

complex activation functions that conventional Rectified Linear Unit (ReLU) activations cannot match 

within the convolutional framework. 

2.3.  Evaluation metrics 

The efficacy of the proposed Networks is quantified through a suite of established evaluation criteria 

that furnish a multifaceted review of the model's capabilities. The selected metrics are standard in the 

field of machine learning and are detailed below: 

Test Accuracy: This metric reflects the proportion of total predictions that are correct on the test 

dataset, serving as a direct measure of the model's classification accuracy. 

Test Precision: Precision is the ratio of true positive predictions to the total number of positive 

predictions made, offering insight into the model's ability to avoid false positives. 

Test Recall: Also known as sensitivity, recall measures the ratio of true positive predictions to all 

actual positive instances. It is a critical indicator of the model's capability to detect the positive class. 
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Test F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a single score 

that balances the trade-off between these two metrics. It is particularly informative for datasets with 

class imbalance. 

Number of Parameters: The complexity of the model is gauged by the total count of trainable 

parameters. This metric is indicative of the model's capacity for learning and its potential susceptibility 

to overfitting. 

3.  Experiments and results 

3.1.  Experimental settings 

In this section, the experimental settings are demonstrated and the results are evaluated to assess the 

performance of models with KAN Convolutional Layers and KAN layers in comparison with standard 

convolutional neural networks and MLP networks, as well as comparing KAN layers to traditional fully-

connected layers. For the experiments, the CIFAR-10 dataset is selected as the basis for evaluation [10]. 

This work trained various architectures on this dataset to compare their performance. To achieve this, 

this paper proposed models that integrate both Linear and Kan Linear layers, as well as classical 

Convolutional and Kan Convolutional layers. Figure 1 and Figure 2 below presents the diverse 

architectures of KAN and KAN Convolutional Layers that were utilized in the experiments, respectively. 

 

Figure 1. Architectures of KAN-based models (Figure Credits: Original). 

The first branch of architectures used in experiments, focusing on the design of fully connected layers. 

This design keeps the convolutional layer part of the different architectures the same, which are all four-

layer CNNs, and make adjustments to the fully connected layer. Here the author considers networks 

with one and two fully connected layers, respectively, as demonstrated in Figure 1. For architectures 

with only one fully connected layer, this work designs networks with one MLP layer (4CNN1L) and 

one KAN layer (4CNN1KAN), respectively. For architectures with two fully connected layers, this work 

designs networks with two layers of MLP (4CNN2L), two layers of KAN (4CNN2KAN), and one layer 

of KAN and one layer of MLP (4CNN1KAN1L), respectively. In the case of fully connected structures 

with one and two layers, respectively, this work designs and compares different architectures to 

determine how to combine the KAN structure and the classical MLP structure to achieve optimal 

performance. 

The second branch of network architectures used in the experiments, focusing on the structural design 

of convolutional layers, as displayed in Figure 2. This work keeps the fully-connected layers of the 

different architectures the same, both two-layer MLPs, and make adjustments and modifications to the 

convolutional layers. Here this work considers networks with three convolutional layers. This work 

designs networks with three CNN layers (3CNN2L), one CKAN and two CNN layers 

(1CKAN2CNN2L), and two CKAN and one CNN layer (2CKAN1CNN2L), respectively. This work 
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designs and compares different architectures to determine how to combine the KAN convolutional 

structure and the classical CNN structure to achieve optimal performance. 

 

Figure 2. Architectures of CKAN-based models (Figure Credits: Original). 

3.2.  Quantitative comparison between KAN and MLP 

Table 1 presents an evaluation of performance criteria including accuracy, precision, recall, F1 score 

and parameter count for a range of models with combinations of KANs and/or MLPs tested on the 

CIFAR-10 Dataset. This evaluation offers insights into proficiency and potency of distinct model setups. 

Table 1. Performance comparison between KAN-based and MLP-based models on CIFAR-10. 

Model Accuracy Precision Recall F1 Score #Params 

4CNN2KAN 76.98% 77.09% 76.98% 76.98% 15850K 

4CNN1KAN1L 74.59% 74.65% 74.59% 74.54% 15814K 

4CNN2L 75.00% 75.07% 75.00% 74.93% 1134K 

4CNN1KAN 76.39% 76.47%% 76.39% 76.31% 697K 

4CNN1L 74.74% 74.79% 74.74% 74.68% 124K 

 

As observed in Table 1, in the CIFAR-10 dataset, the network with a single KAN layer(1KAN) not 

only surpassed the two-layer MLP(2L) structure in accuracy, reaching 76.98%, but also exhibited a more 

parameter-efficient design, holding 697K parameters compared to the 1134K of the two-layer MLP. 

In comparison to the network with only one MLP layer (1L), the configuration that includes a KAN 

layer shows a roughly 2% gain in accuracy, even though it has a higher parameter count. 

Besides,compared to the network with two layers of MLP, the fully connected networks integrated 

with KAN, namely 1KAN1L and 2KAN, have achieved better performance with accuracy rates of 

74.59% and 76.98% respectively. However, they require a greater number of parameters. 

3.3.  Quantitative comparison between CKAN and CNN 

As the Table 1 presented in the dimension of KAN and MLP combinations, the Table 2 presents an 

evaluation of performance criteria including accuracy, precision, recall, F1 score and parameter count 

for the proposed models with combinations of KAN Convolutions and/or classical convolutions tested 

on the CIFAR-10 Dataset. 

Table 2. Performance comparison between CKAN-based and CNN-based models on CIFAR-10. 

Model Accuracy Precision Recall F1 Score #Params 

3CNN2L 66.36% 66.42% 66.36% 66.31% 1130K 

2CKAN1CNN2L 69.07% 69.07% 69.07% 69.84% 1128K 

1CKAN2CNN2L 70.00% 71.02% 70.00% 70.30% 1130K 
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As observed in Table 2, in the CIFAR-10 dataset, compared to the network with three layers of CNNs, 

the network with two layers of KAN and one layer of CNN achieves a greater advantage with 69.07% 

accuracy while maintaining the same number of parameters. Also, the network with one layer of KAN 

and two layers of CNN exceeds with an accuracy of 70% with the same number of parameters. 

4.  Discussion 

In comparing KAN and MLP through the combination of different network architectures, a single-layer 

KAN can achieve better accuracy while maintaining a smaller number of parameters compared to a two-

layer MLP. This confirms the theory that introducing learnable spline functions can make fully 

connected networks more interpretable [2]. Although KAN itself requires more parameters than MLP 

when maintaining the same number of layers due to its inherent characteristics, the current experimental 

results have demonstrated that it is feasible to reduce the number of parameters by designing networks 

with fewer KAN layers than those needed to achieve the same performance with an MLP. 

Similarly, introducing KAN convolutional layers in the convolutional structure can improve the 

performance of the model without increasing the number of parameters. 

Overall, by designing experiments to compare different networks with KANs and KAN convolutions, 

it could be found that the structures with KAN and KAN convolutions were able to achieve higher 

accuracy while maintaining the number of parameters, or maintain accuracy with a lower number of 

parameters. In fully connected networks, a KAN structure with only one layer can achieve higher 

accuracy with fewer parameters than a traditional two-layer MLP structure. In convolutional structures, 

the research found that replacing one or two layers of classical convolutional layers with KAN 

convolutional layers can achieve higher accuracy while maintaining the number of parameters. 

5.  Conclusion 

This research has demonstrated that integrating KANs and CKANs into traditional neural network 

architectures can lead to significant improvements in accuracy and parameter efficiency. The 

comparative analysis on the CIFAR-10 dataset revealed that a single KAN layer outperforms a two-

layer MLP in terms of accuracy while requiring fewer parameters. Similarly, the incorporation of KAN 

convolutional layers into CNNs showed comparable or superior performance without an increase in 

parameter count. These findings suggest that KAN-based models offer a promising avenue for 

developing more efficient and interpretable deep learning models. 

The results highlight the need for further exploration into the optimization and application of KANs 

and CKANs across various domains. Subsequent research should concentrate on enhancing the 

scalability and robustness of these architectures, ensuring their potential is fully realized in complex 

real-world scenarios. With continued innovation, KANs and CKANs could become pivotal in advancing 

the field of deep learning. 
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