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Abstract. Thompson Sampling has become a prominent algorithmic approach in recent years. 

This review focuses on the evolution of TS and its variants, showing the innovative aspects of 

Neural Thompson Sampling (NeuralTS) and Meta-Thompson Sampling (Meta-TS), explaining 

the aggressive strategy used by Feel-Good Thompson Sampling (FGTS) and the introduction to 

Safe-LTS for Linear Thompson Sampling (LTS) problem. The survey first systematically review 

the literature, then examine the theoretical underpinnings, algorithmic frameworks and 

innovations of those TS variants, in the end provide our insights in future directions. In short, 

NeuralTS handles high-dimensional reward functions through deep learning integration, Meta-

TS takes advantage of meta-learning for adapting to unknown prior distributions, FGTS applies 
an aggressive exploration strategy to handle pessimistic scenarios. In the end, this paper suggests 

that future research should emphasis on enhancing generalizability, bridging the gap between 

theory and practice, and improving adaptability to complex and dynamic environments. 

Keywords: Thompson Sampling, Neural Thompson Sampling, Meta-Thompson Sampling, 

Feel-Good Thompson Sampling, Sliding-Window Thompson Sampling. 

1.  Introduction 

The Multi-Armed Bandits Problem (MABP) is a core issue in decision theory and is widely applied in 

fields such as recommendation systems, medical decision-making, and online advertising. Thompson 
Sampling (TS) algorithm is introduced to handle MABP, because it can achieve a good balance between 
exploration and exploitation. The research on TS and Linear TS (LTS) is important because TS leverages 
Bayesian inference for decision-making and adapts to environmental changes due to its reliance on linear 
models to predict rewards, making it particularly useful in dynamic settings. In the past few years, 
scholars have conducted in-depth research on TA and proposed various improvements. 

In 2019, Phan et al. examined the impact of approximate inference errors and proposed forced 

exploration to mitigate performance degradation [1]. This approach helps to enhance the robustness of 
models when faced with uncertainty and complexity. In 2020, significant progress was made across 
multiple fields. In the field of posterior distribution updates, Zhang et al. introduced a deep learning-
based approach called Neural Thompson Sampling [2], which uses neural networks for the reward's 
posterior distribution, leveraging neural tangent features for variance estimation. In the field non-
stationary MABP, Trovo et al. raised an algorithm called Sliding-Window Thompson Sampling (SW-
TS) [3], using a sliding-window technique to handle abrupt and smooth changes. SW-TS provides upper 

bounds on the dynamic pseudo-regret for non-stationary environments, offering a reliable solution for 
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decision-making problems in non-stationary environments. In the field of LTS under safety constraints, 
Moradipari et al. studied the impact of unknown linear safety constraints and proposed a safe algorithm 
called Safe-LTS to ensure constraints are met [4]. A year later, Moradipari et al. further explored safe 
exploration under linear constraints, providing a new algorithm based on LTS [5]. Also in 2020, Vernade 

et al. addressed the challenge of delayed and partially observable feedback with OTFLinUCB and 
OTFLinTS, which integrate information as it becomes available [6]. In the same year, Hamidi and Bayati 
proposed a data-driven version of LTS that adjusts posterior inflation, achieving minimax optimal regret 
under certain conditions [7]. In 2021, Kveton et al. proposed a meta-learning variant called Meta-
Thompson Sampling [8], which adapts to different bandit instances, demonstrating the benefits of meta-
learning with a novel regret bound. The main contribution of this research lies in proposing a novel 
Bayesian regret bound, which is not only an important theoretical support for the Meta-TS algorithm 
itself but also offers a new perspective for the entire Bayesian optimization and decision-making process. 

By treating problem instances as samples from an unknown prior, Meta-TS is able to learn and improve 
its exploration strategy through continuous interaction. In 2022, Zhang suggested a modification to 
standard TS called Feel-Good Thompson Sampling [9], to be more aggressive in exploring high-reward 
models, addressing the issue of suboptimality in pessimistic scenarios. This theoretical framework can 
be extended to address some Markov Decision Process (MDP) problems, offering a simple yet 
comprehensive mathematical structure for analysing TS and its variants. In 2024, Gigli explored TS for 
optimizing hierarchical digital marketing campaigns, proposing a parametric model that enhances 

efficiency and convergence [10]. In the same year, Zheng et al. introduced an approximate strategy using 
Underdamped Langevin Monte Carlo for high-dimensional posteriors [11], providing a more efficient 
way to sample from complex distributions, allowing TS to be applied to more sophisticated problems. 

The above literature has witnessed a surge in modifications and enhancements to the traditional TS 
algorithm, each tailored to address specific problems or to leverage new theoretical insights. However, 
a cohesive understanding of these developments and their interplay is still lacking. This review takes a 
multi-dimensional approach to bridge the knowledge gap. It starts with a systematic literature review of 

advanced TS developments from prominent conferences or preprints. Then it chooses some of the most 
promising new algorithms or optimizations, looks into how these innovations have been adapted to new 
problem areas, and examines their mathematical bases and theoretical support for their effectiveness. In 
the end, this paper assesses the strengths and limitations and suggests directions for future work. 
Hopefully, this review can provide ideas for improving the universality of related algorithms and provide 
references for the selection of Thompson Sampling algorithms in complex situations. 

2.  Thompson Sampling Algorithm for Multi-Armed Bandit Problem 

Multi-armed Bandits problem is a leading problem in the field of reinforcement learning, since a lot of 
advanced algorithms anchor in this problem settings. Thompson Sampling algorithm is one of the most 
efficient algorithms that are designed to solve this problem. Research on this is always valuable. 

2.1.  An introduction to Thompson Sampling Algorithm 

MABP is a foundational dilemma in machine learning where an agent must choose between exploring 
unknown options for potentially greater reward or exploiting known options to maximize immediate 
gains. It's often framed as a gambler choosing which of several slot machines (each a "bandit") to play, 
with the goal of maximizing total winnings over time. Thompson Sampling is an online decision-making 
algorithm widely used in MABP. Its core principle is using Bayesian inference to estimate the reward 
probabilities for each arm and randomly sample from these probability distributions at each step, thereby 

balancing the trade-off between exploration and exploitation.  

2.2.  The Advantages of Thompson Sampling Algorithm 
Many kinds of algorithms are created to solve MABP, such as greedy algorithm and Upper Confidence 
Bound (UCB) algorithm, but TS edges over them for certain reasons. For example, greedy algorithms 
always choose the currently estimated optimal arm, which can lead to the algorithm getting stuck in a 
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local optimum and neglecting exploration of other arms, while TS introduces an exploration mechanism 
through random sampling, helping to avoid this situation. Another example is UCB algorithms, which 
use a deterministic strategy to select actions by calculating the confidence upper bounds for each arm, 
sometimes too conservative in some cases. TS algorithm deals the problem by offering better exploration 

capabilities since it is based on probabilistic random strategy. 

2.3.  Evaluation Metrics for Multi-Armed Bandit Algorithms 
When comparing the performance of different multi-armed bandit algorithms, several key metrics are 
commonly used in the literature. Here are some of the most important ones: 
1) Regret (or Expected Regret): This is perhaps the most fundamental metric in the bandit literature. 

Regret measures the difference between the total reward that could have been achieved by always 
choosing the best arm (the one with the highest expected reward) and the actual total reward 
achieved by the algorithm. It's a measure of the opportunity cost of not always choosing the optimal 

arm. Mathematically, if 𝑟𝑚𝑎𝑥 is the reward of the best arm and 𝑟𝑡 is the reward of the chosen arm 

at round 𝑡, the cumulative regret 𝑅𝑇  after 𝑇 rounds is given by: 

 𝑅𝑇 = 𝐸 [∑ (𝑟𝑚𝑎𝑥 − 𝑟𝑡)𝑇
𝑡=1

]  (1) 

2) Cumulative Reward: This metric simply sums up the rewards obtained by the algorithm. It's a direct 
measure of the algorithm's performance but does not take into account the potential rewards that 

could have been obtained by choosing other arms. 
3) Average Reward per Round: Sometimes, especially in problems where the number of rounds T is 

very large, the average reward per round is used instead of the cumulative reward. This normalizes 
the performance across different numbers of rounds. 

4) Exploration Probability: This metric measures the proportion of times the algorithm chooses to 
explore (i.e., choose an arm other than the one with the highest current estimated reward). It's a 
direct measure of the algorithm's exploration behaviour. 

5) Convergence Time: This is the number of rounds it takes for the algorithm to consistently choose 

the optimal arm. It's a measure of how quickly the algorithm learns the best arm. 
6) Variance of Rewards: Some algorithms achieve high rewards but with high variability. The 

variance of the rewards gives insights into the stability of the algorithm's performance. 

3.  The Combination of Neural Networks and Thompson Sampling 

Deep neural networks are widely used in fields such as image recognition, speech recognition, natural 

language processing, gamers, and robot control. It is believed that deep neural networks could also be 
applied to the upgrade of TS algorithm. NeuralTS, which integrates deep neural networks with TS to 
balance exploration and exploitation in complex, real-world applications, was proposed on this idea. 

3.1.  The Core Principle of NeuralTS 
Unlike traditional bandit algorithms, which might sometimes struggle with high-dimensional reward 

function approximation, NeuralTS leverages the expressive power of neural networks to effectively 
handle such complexity. The novelty of NeuralTS lies in its approach to uncertainty estimation, where 
it considers weight uncertainty across all layers of the neural network, not just the last layer as in some 
previous methods. This allows NeuralTS to provide a more accurate posterior distribution of rewards, 
which is crucial for the algorithm's performance. The algorithm is built around a novel posterior 
distribution of the reward, with the mean represented by the neural network approximator and the 
variance derived from the neural tangent features of the network. The pseudocode of a simple flowchart 

for NeuralTS is shown in Figure 1. 
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Figure 1. Pseudocode of a simple flowchart for NeuralTS. 

3.2.  Algorithmic Framework of NeuralTS 
NeuralTS requires a set of parameters including the number of rounds T, exploration variance ν, network 

width m, and regularization parameter λ, used to balance exploration and exploitation and control model 
complexity. The algorithm commences by initializing the posterior covariance matrix U0 and the neural 
network parameters θ0 with selected random values to promote diverse exploration. During each round, 
it computes the variance of the reward's posterior distribution for each arm, samples an estimated reward 
from this distribution, and selects the arm that maximizes the expected reward. The phase of post-reward 
observation refines the neural network parameters through gradient descent, optimizing a loss function 
that incorporates an ℓ2-regularization term to raise generalization. The covariance matrix is concurrently 

updated to reflect the newly acquired data, encapsulating the uncertainty in the reward estimation. 
NeuralTS is given in Algorithm 1 as is shown in Figure 2. It maintains a Gaussian distribution for 

each arm’s reward. When selecting an arm, it samples the reward of each arm from the reward’s posterior 
distribution, and then pulls the greedy arm. Once the reward is observed, it updates the posterior. The 
mean of the posterior distribution is set to the output of the neural network, whose parameter is the 
solution to the following minimization problem:  

 (min
𝜃

𝐿(𝜽) = ∑ [𝑓(𝒙𝑖,𝑎𝑖
; 𝜽) − 𝑟𝑖,𝑎𝑖

]
2

2⁄𝑡
𝑖=0

+ 𝑚𝜆‖𝜽 − 𝜽𝟎‖
2

2
2⁄         (2) 

It’s obvious that (1) is an ℓ2-regularized square loss minimization problem, where the regularization 

term centres at the randomly initialized network parameter 𝜽0. The algorithm adapts gradient descent 

to solve (2) with step size 𝜂 and total number of iterations 𝑱. 
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Figure 2. Pseudocode for Neural Thompson Sampling algorithm. 

3.3.  Theoretical Guarantees and Empirical Validation 
The theoretical bases of NeuralTS are robust. Theoretical analysis guarantees that, assuming a bounded 
reward function, NeuralTS achieves a cumulative regret of O(T), which aligns with the regret bounds of 

other leading contextual bandit algorithms in terms of the total number of rounds T. This O(T) regret 
bound is a testament to the algorithm's efficiency in balancing exploration and exploitation. 

The impact of the neural network's architecture and the variance of the exploration noise on the regret 
bound can be considered to further substantiate the theoretical guarantees. By adjusting the network's 
width and depth, the approximation capability of the neural network can be modulated, thus influencing 
the rate at which the algorithm converges to the optimal policy. Additionally, the choice of exploration 
variance is critical. A higher variance promotes exploration at the cost of increased short-term regret, 

while a lower variance facilitates more rapid exploitation but may delay discovering the optimal arm. 
Empirical validation has been conducted across a diverse array of datasets, and the performance of 

NeuralTS is benchmarked against several cutting-edge algorithms, such as linear and kernelized TS, 
UCB methods, and neural network-based approaches like Bootstrapped DQN. The results consistently 
demonstrate the competitive performance of NeuralTS, showcasing its ability to generalize across 
different problem domains and data distributions. It can be stated that NeuralTS’ seamless integration 
of probabilistic exploration with deep learning's predictive prowess positions it as a formidable approach 
to sequential decision-making in the presence of uncertainty. 

3.4.  Limitations of NeuralTS and Future Directions 
Despite NeuralTS demonstrates strong theoretical appeal and empirical performance, it has limitations 
such as relatively high computational complexity, especially when updating deep and wide networks 
through multiple gradient descent steps. Besides, the theoretical guarantees of the algorithm rely on the 
assumption of a bounded reward function, which may not always hold true in practical applications. 

Future research should focus on optimizing the algorithm to reduce computational costs, extending its 
adaptability to unknown or dynamically changing time horizons, and enhancing its robustness to the 
unbounded reward functions or potential model misspecifications. 

4.  The Application of Meta Learning in Thompson Sampling 

Meta learning is a concept in the field of machine learning that focuses on designing algorithms that can 

utilize past experience to learn new tasks faster. This idea is actually also beneficial for reinforcement 
learning. Meta-TS is one of the research results on this idea. 
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4.1.  The Background of Meta-TS 
In the previous chapter, NeuralTS is discussed, which focuses on utilizing deep neural networks to better 
approximate the posterior distribution of reward functions, providing more accurate reward predictions 
when facing high-dimensional contextual information. But when dealing with multi-task environments, 

some preprocessing is needed. That’s why Meta-TS is created, which focuses on adapting to unknown 
prior distributions through meta-learning and stresses the rapid adaptation capability of the algorithm to 
new tasks through meta-learning, the core of which is to enable models to extract valuable knowledge 
from previous data when facing new problems, thereby improving learning efficiency and performance. 

The combined use of NeuralTS and Meta-TS can further enhance the performance of TS in complex 
circumstances. For example, when facing an unknown environment, Meta-TS can adjust its strategy to 
adapt to new tasks, while NeuralTS can provide more accurate reward predictions during the adaptation 
process. This combination not only expands the application range of TS but also provides new ideas for 

solving more complex reinforcement learning problems. 

4.2.  The Core Principle of Meta-TS 
The idea of meta learning can be well applied to the estimation and updating of prior reward distributions. 
Meta-TS operates by maintaining a meta-posterior distribution Qs, which reflects the algorithm's current 

estimate of the true prior P∗. For each task, it samples a potential prior, Ps, from this meta-posterior and 
employs it to guide the TS algorithm's actions. A simple flowchart is shown in Figure 3. 

The sampling of Ps represents an optimistic exploration strategy, enabling Meta-TS to interact with 

the environment and gather rewards. After the interaction, Meta-TS updates its meta-posterior based on 

the observed rewards, refining its estimate of P∗ in accordance with Bayesian principles. This iterative 
process of sampling and updating allows Meta-TS to progressively learn the underlying prior, leading 
to more informed decisions and efficient exploration over successive tasks. 

 

Figure 3. Pseudocode of a simple flowchart for Meta-TS. 

4.3.  Efficient Implementations of Meta-TS 
In the paper by Kveton et al., efficient implementations of Meta-TS for both Bernoulli and Gaussian 
bandits are presented [8]. These implementations take advantage of the properties of these distributions 
to update the meta-posterior in a computationally efficient manner. 

The authors evaluate the performance of Meta-TS using synthetic experiments. The results indicate 
that Meta-TS can quickly adapt to the unknown prior P*, and its regret is comparable to that of TS with 
a known P*. Particularly in the Gaussian bandit scenario, where the meta-prior width σ0 is significantly 
larger than the instance prior width σ0, substantial gains from meta-learning are expected. 

The experimental outcomes are in line with this expectation, showing that after just a few tasks, the 
slope of the Meta-TS regret approaches that of OracleTS, the idealized TS with the true prior P*. 
Furthermore, the experimental results demonstrate that the benefits of meta-learning are preserved as 
the number of arms K or dimensions D increases. However, these benefits diminish when the prior width 

σ0 approaches the meta-prior width σ0. In such cases, there is little advantage to adapting to P*, and all 
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methods perform similarly. The authors also experimented with mis-specified Meta-TS, showing that 
the impact of mis-specification is relatively minor, which attests to the robustness of Meta-TS. 

In summary, Meta-TS showcases its adaptability and effectiveness under unknown prior conditions 
through its efficient implementation and theoretical analysis. These experimental results not only 

substantiate the practicality of the Meta-TS algorithm but also provide strong evidence for the potential 
application of meta-learning in more complex settings. 

4.4.  Limitations of Meta-TS and Future Directions 
While Meta-TS shows considerable promise, there still exists limitations. Previously, the regret analysis 
is inherently conservative, relying on a single pull of each arm per task. Additionally, the analysis is 

currently limited to Gaussian bandits, indicating a need for further research to generalize the approach 
to other types of bandit problems. For future research, the analysis should be extended beyond Gaussian 
bandits. This would involve more complex algebra and a deeper understanding of different posterior 
distributions. Also, there is a need to move beyond the conservative assumption of pulling each arm at 
least once per task. A less conservative analysis can potentially show greater benefits from meta-learning. 
Another interest lies in analysing Meta-TS in the context of contextual bandits, where the arms are 
associated with different contexts or features. These new directions are all worth further exploration. 

5.  Feel-Good Thompson Sampling for More Aggressive Exploration 

5.1.  Theoretical Framework of FGTS 
Sometimes the exploration strategy of TS is too conservative. To solve the problem, FGTS is proposed 

with an innovative idea that explores new actions more aggressively, thereby tackling the suboptimality 
issues in pessimistic scenarios and offering a significant step forward in the field of adaptive online 
learning. FGTS addresses the conservative nature of standard TS by introducing a theoretical framework 
that integrates aggressive exploration strategy. This framework utilizes the Decoupling Coefficient, a 
key concept that quantifies exploration complexity and enables the control of Bellman error within the 
algorithm. The Decoupling Coefficient allows FGTS to convert the regret analysis into an online least 
squares estimation problem and measures how aggressively it should explore by determining the 

minimum number of actions needed to keep the regret in check. 
By applying the Decoupling Coefficient, FGTS introduces an optimistic exploration term, Feel-Good, 

which biases the model towards higher reward predictions based on historical data. This additional term 
is crucial for achieving better frequentist regret bounds, as it pushes the algorithm to explore more boldly. 
In essence, FGTS enhances the standard TS by providing a theoretical base for aggressive exploration, 
ensuring that the algorithm remains effective even when facing challenging, uncertain environments. 
The pseudocode of a simple flowchart for FGTS is shown in Figure 4. 

 

Figure 4. Pseudocode of a simple flowchart for FGTS. 
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5.2.  The Innovation Aspects of FGTS 
Traditional TS selects actions by sampling from the posterior distribution, which might not be sufficient 
to discover optimal actions, especially in complex or high-dimensional action spaces. To address this, 
FGTS introduces an additional exploration term based on the maximum historical reward predicted by 

the model. Specifically, the exploration term is given by −𝜆 min(𝑏, 𝑓(𝜃, 𝑥)), where λ is a non-negative 

tuning parameter that controls the intensity of exploration, b is a constant defining the boundary of 

rewards, and 𝒇(𝜽, 𝒙) represents the maximum reward predicted by the model for given parameters 𝜽 

and context 𝒙. This term encourages the algorithm to favour models that have demonstrated higher 
rewards in the past, thus promoting the exploration of actions that could lead to greater gains. Meanwhile, 
to make sure that the algorithm does not over-explore to the point of performance degradation, FGTS 
incorporates a penalty term that restrains the selection of models that deviate significantly from the 
optimal. This penalization mechanism helps the algorithm to maintain a reasonable balance between 
venturing into new actions and utilizing information effectively to make well-informed decisions. 

5.3.  Conclusion and Future Directions 

FGTS marks a significant advancement over traditional TS by introducing a more aggressive exploration 
strategy, resulting in optimal regret bounds for finite action spaces. Theoretical analysis has proven that 

FGTS achieves a regret bound of 𝑂(√𝐾𝑇 ln 𝑁), substantially enhancing from the previous 𝑂̃(𝑑3 2⁄ √𝑇), 

for high-dimensional problems. Despite these gains, FGTS may not be optimal for all structured bandit 
problems. Future work should focus on integrating structural information to refine regret bounds further, 
potentially improving performance across a wider range of applications. Future research could also dig 
into extending FGTS to more complex settings, such as those with random transitions in reinforcement 
learning, or incorporating multi-agent systems to explore emergent behaviours in dynamic environments. 

6.  Linear Thompson Sampling under Safety Constraints 

6.1.  Settings of the Linear Stochastic Bandit Problem 
The Linear Stochastic Bandit Problem (LSBP) is a generalization of the Multi-Armed Bandit Problem 
in reinforcement learning and online optimization. In LSBP, the learner selects an action (or "arm") from 
a set of available actions at each step (or round), each associated with a feature vector. Upon executing 

an action, the learner observes a stochastic reward that is the inner product of the action's feature vector 
with an unknown parameter vector, perturbed by zero-mean noise. The goal is to maximize the total 
reward over a sequence of rounds, or equivalently, minimize the cumulative regret. LSBP is relevant in 
applications like online advertising, where each ad is an action, and the feature vector captures ad 
attributes like size, colour, and position. 

6.2.  The Exploration Process and Proposal of Safe-LTS 

To find out a proper solution to the LSBP under additional linear safety constraints, Moradipari et al. 
proposed a novel safe algorithm in 2020, which achieves a regret bound comparable to the standard LTS 
without safety constraints, demonstrating the advantage of  inherent randomness of TS in expanding the 
set of safe actions. A year later, they researched on the impact of unknown linear safety constraints on 
the performance of LTS and proposed Safe-LTS algorithm with pure exploration-exploitation phases, 
ensuring safety constraints met at each round. Safe-LTS is based on the necessity to uphold safety while 

seeking optimal reward, particularly in environments with stage-wise safety or reliability constraints. It 
achieves regret bounds comparable to Safe-UCB and demonstrates its effectiveness through numerical 
simulations. Safe-LTS The algorithm ensures compliance with safety constraints at each round, even 
amidst uncertainty. Its theoretical underpinning lies in its ability to construct confidence regions that 
encapsulate unknown parameters with high probability, thereby allowing for safe action selection. 
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6.3.  Algorithm Framework and Analysis of Safe-LTS 
The implementation of Safe-LTS basically involves two stages. At the pure exploration phase, it gathers 
preliminary data by selecting actions from a safe subset based on random parameter sampling. At the 
safe exploration-exploitation phase, Safe-LTS employs regularized least squares estimates to construct 

a confidence region that encapsulates the uncertainty around the parameter estimates. Actions are chosen 
that optimize the sampled parameter's expected reward while remaining within a computed safe set, 
ensuring that all decisions satisfy the imposed safety constraints. This allows Safe-LTS to balance the 
acquisition of knowledge with the maintenance of safety, making it well-suited for environments where 
risk mitigation is crucial. 

The core of this algorithm lies in its sophisticated parameter settings and data structures. The choice 
of δ, T, T′, and λ are pivotal [5]: δ serves as the confidence level, T denotes the total number of rounds, 
T′ marks the duration of the pure exploration phase, and λ is the regularization parameter that controls 

the trade-off between exploration and exploitation. The algorithm meticulously maintains the Gram 

matrix At and the regularized least squares estimate 𝜽̃𝒕 , which are instrumental in constructing the 

confidence region 𝑪𝒕(𝜹′). The algorithm dynamically computes the safe set 𝑫𝒕
𝒔, an inner approximation 

of the true safe set 𝑫𝟎
𝒔 , ensuring that all chosen actions 𝒙𝒕 are in compliance with the safety constraints. 

A pseudo-code for Safe-LTS is shown in Figure 5. 

 

Figure 5. Pseudocode for Safe-LTS. 

Specifically, at each round t = T′ + 1, … , T of the safe exploration-exploitation phase, Safe-LTS 

uses the previous action-observation pairs to compute the Gram matrix At and the RLS-estimate θ̃t of 
θ∗ defined as follows:  

 𝐴𝑡 = 𝜆𝐼 + ∑ 𝑥𝑠𝑥𝑠
𝑇𝑡−1

𝑠=1
, 𝜃𝑡 = 𝐴𝑡

−1
∑ 𝑟𝑠𝑥𝑠

𝑡−1

𝑠=1
.       (3) 

6.4.  Limitations of Safe-LTS and Future Directions 
While Safe-LTS demonstrates promising results in addressing the linear stochastic bandit problem with 
safety constraints, it does have limitations. Thise is because the theoretical guarantees provided are 
predicated on certain assumptions that may not hold in all practical scenarios. For example, the reliance 
on the sub-Gaussian noise assumption for the reward and safety constraint functions is crucial in our 
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previous discussion. But in real-world applications, noise distributions may not strictly adhere to this 
assumption, potentially affecting the algorithm's regret guarantees. Besides, the algorithm's efficiency 
decreases with the dimensionality of the action space, as the computation of the confidence regions and 
the safe set becomes more complex. Also, the algorithm's performance hinges on the accurate estimation 

of the unknown parameter θ* and the construction of the safe set, which can be challenging in complex, 
high-dimensional environments. 

Future research on Safe-LTS should delve into enhancing the algorithm's adaptability to dynamic 
environments where safety constraints may evolve over time. This includes developing methods that 
allow for the algorithm to efficiently respond to changes in the constraint landscape. Besides, there is a 
need to extend the theoretical framework to accommodate non-sub-Gaussian noise characteristics, 
which are more reflective of real-world scenarios. Investigating the scalability of Safe-LTS to high-
dimensional action spaces is crucial, potentially through the incorporation of dimensionality reduction 

techniques or optimized confidence region computations. 

7.  Combining Technologies with Practical Applications 

The convergence of diverse TS variants has opened new avenues for tackling complex decision-making 
challenges across various domains, as is shown in Table 1. Each variant, with its distinctive features, 

brings a unique set of advantages to real-time applications. 

Table 1. A comparison between some of the innovative algorithms. 

 NeuralTS Meta-TS FGTS SW-TS Safe-LTS 

Core Concept 
Deep learning 

integration 

Meta-
learning 

adaptation 

Aggressive 
exploration 

strategy 

Sliding 
window 

adaptation 

Safety 
constraint 
integration 

Application 

Recommendation 
systems, 

personalized 

medicine 

Multi-task 
learning, 

rapid 
adaptation to 

new 
problems 

Exploration 
in 

pessimistic 

scenarios 

Financial 
trading, 
online 

advertising 

Autonomous 
driving, 
robotics 

Advantages 

Approximation 
of high-

dimensional 
reward functions 

Learning and 
adaptation 

across tasks 

Encourages 
exploration 

of high-

reward 
actions 

Responsive to 
recent 

changes in the 
environment 

Ensures 
decisions 
adhere to 

safety 
margins 

Theoretical 
Guarantees 

Cumulative 
regret of O(T1/2) 

Regret 
analysis 

based on 
meta-

learning 

Theoretical 
regret with 
optimistic 

bias 

Regret 
analysis in 

non-stationary 
environments 

Principled 
safety 

decision-
making 

Computational 

Efficiency 

High, but 
requires 

optimization 

Depends on 
meta-model 
complexity 

High, due to 
simple 

exploration 
strategy 

Moderate, 
maintains 

sliding 
window 

Low, 
calculates 

confidence 
regions 

Empirical 
Performance 

Competitive with 

state-of-the-art 
benchmarks 

Quick 

adaptation to 
new tasks 

Superior to 
standard TS 
in specific 
scenarios 

Robust to 

reward signal 
delays 

Reliable 
performance 

in safety-
critical 

applications 

Future 
Directions 

Enhance 
computational 

Extend to 
more 

Fine-tune 
balance 

Explore 
sophisticated 

Develop 
efficient 
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efficiency of 
deep learning 
components 

complex 
bandit 

problems 

between 
exploration 

and 
exploitation 

windowing 
techniques 

methods for 
updating 

confidence 
regions 

Remarks 

Requires 

extensive data 
for training 

neural networks 

Needs 

sufficient 
task 

diversity 

Parameter 
tuning is 

crucial for 
maximizing 

benefits 

Sensitive to 
window size 

and shape 

Sensitive to 

complexity of 
safety 

constraints 

 
When deep learning is seamlessly integrated with Thompson Sampling, NeuralTS is proposed. Its 

ability to approximate complex reward landscapes with neural networks provides a powerful tool for 
both exploration and exploitation, making it a strong candidate for scenarios where the reward function 
is intricate and not easily modelled with traditional approaches. That’s why NeuralTS excels at handling 

high-dimensional reward functions that are prevalent in modern applications such as recommendation 
systems and personalized medicine. Future research can involve enhancing the computational efficiency 
of its deep learning components and broadening its applicability to a wider range of problems. 

When it comes to learning from a series of tasks and adapting its strategy to new, unseen problems, 
Meta-TS stands out for its meta-learning approach. This is particularly useful in multi-task environments 
where the ability to quickly adapt to new situations can significantly improve performance. However, 
the meta-learning paradigm of Meta-TS could still benefit from a more comprehensive theoretical 

analysis that could extend its reach to more complex bandit problems. 
For pessimistic scenarios where traditional TS might be too conservative, FGTS introduces an 

aggressive exploration strategy. By incorporating an optimistic bias, FGTS encourages exploration of 
high-reward actions that could potentially break out of suboptimal local maxima. Future research could 
focus on fine-tuning the balance between exploration and exploitation to maximize the benefits of its 
aggressive strategy. Applying sliding-window technique, SW-TS is enabled to stay responsive to recent 
changes while still leveraging historical data, demonstrating adaptability to non-stationary environments, 
making it an excellent choice for applications where the underlying reward distributions may change 

over time, such as in financial trading or online advertising. It might benefit from further integration 
with other MAB algorithms, potentially leading to hybrid methods that can tackle an even broader 
spectrum of non-stationary environments. 

To ensure safety in critical applications such as autonomous driving and robotics, Safe-LTS emerges 
as a result. By constructing confidence regions that encapsulate the uncertainty in parameter estimates, 
Safe-LTS provides a principled way to make decisions that adhere to safety margins. Future work could 
involve designing more efficient methods for updating confidence regions and exploring its applicability 

to problems with complex safety constraints. 
The collective integration of these TS variants has already demonstrated improved performance in 

balancing the delicate trade-off between exploration and exploitation, effectively dealing with delayed 
feedback, and adapting to the ever-changing dynamics of real-world environments. 

In summary, the fusion of TS variants with cutting-edge technologies such as deep learning, meta-
learning, and safety constraints has propelled the field of sequential decision-making to new heights. As 
we continue to push the boundaries of what these algorithms can achieve, we pave the way for innovative 

solutions to some of the most pressing challenges in artificial intelligence, machine learning, and beyond. 
Future research in this domain should focus on enhancing the universality, efficiency, stability, and 
scalability of these algorithms, ensuring they are well-prepared to handle the diverse and intricate 
decision-making challenges of the real world. 

Table 1. (continued). 
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8.  Conclusion 

This review paper has provided an extensive survey of TS and its variants, highlighting their evolution 
and application. It has systematically reviewed the literature, examined the theoretical foundations, 
algorithmic frameworks, and innovations of these TS variants, and offered insights into future research 

directions. In particular, it discusses NeuralTS, Meta-TS, FGTS, and Safe-LTS. These variants have 
been tailored to address specific challenges, including high-dimensional reward functions, unknown 
prior distributions, pessimistic scenarios, and safety constraints. Those algorithms all have unique 
innovative aspects. More specifically, NeuralTS integrates deep learning to handle complex reward 
landscapes, Meta-TS leverages meta-learning for rapid adaptation to new tasks, FGTS applies an 
aggressive exploration strategy to overcome suboptimality in pessimistic situations, and Safe-LTS 
ensures decisions adhere to safety margins, particularly in critical applications. These algorithms have 
demonstrated effectiveness in both theory and practice, with empirical validations showcasing their 

potential across various problem domains. Despite they all have promising performance in specific 
contexts, this survey talks about their limitations that warrant future research. For instance, NeuralTS 
faces high computational complexity, Meta-TS relies on conservative assumptions, FGTS requires 
careful parameter tuning, and Safe-LTS may be less efficient in high-dimensional action spaces. 
Addressing these limitations will enhance the universality, efficiency, and stability of these algorithms. 
All in all, this review paper has provided a comprehensive perspective on TS and its variants and 
outlined clear directions for future research. Hopefully, these outcomes will advance the field of decision 

theory and contribute significantly to practical applications. 
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