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Abstract. Generative model has opened up the area of image generation and has become a hot 
topic in recent years. Among the most famous generative models, Generative Adversarial 

Network (GAN) is outstanding among them, offering extensive avenues for exploration. The 

Wasserstein GAN (WGAN), as one of the GANs, introduces an innovative framework for 

training GANs based on the Earth Mover’s (Wasserstein) distance, providing a steadier training 

process. The experiment tried various modifications to WGAN, including changing the 

optimizers and the network architecture. Specifically, this work tried replacing the original Root 

Mean Square Prop (RMSprop) with another optimizers. Also, this work tried to add residual 

blocks to the network structure. These modifications provided interesting results, providing 

supplementary validation of the original WGAN structure, and providing some possibilities of 

optimization. According to the results, it could be found that the results of some modifications 

are very positive. However, some of the changes presented very unsatisfactory results, which 

gave us some insight. 
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1.  Introduction 

Recently, the field of image generation has grown rapidly. Among them, Generative Adversarial 

Network (GAN) is unique because of its generation mode and excellent generation effect, and widely 

used for projects like image generation and editing, data enhancement, text generation and translation 
[1,2]. GANs, first presented in 2014 by Ian Goodfellow and associates, are designed to provide artificial 

data that can be distinguished from real data [3]. The architecture of Gans is based on an adversarial 

framework consisting of two neural networks: a Generator and a Discriminator. The two networks 
compete with one another during training and work together to enhance performance. In more detail, 

the task of Generator(G) is to generate synthetic data by using a random noise vector and generate data 

that is as realistic as possible to confuse the discriminator and make it judge the generated images as 

real. The Discriminator(D)'s role is to receive input from the real data set and the data generated by the 
generator, and accurately distinguish between the actual data and the generated data [4].  

The generator adjusts its weight through Backpropagation and gradient descent, so that the generated 

images can fool the discriminator to the maximum extent possible. During the training process, 
generators and discriminators are trained alternately. Typically, the generator is fixed first and updates 

are made to the discriminator weights. Then, fix the discriminator and update the generator's weights 
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GAN may encounter convergence problems in practical training [5]. The generator can get into a 

mode crash and only generate a limited sample of data. Also, Gradient vanishing or gradient explosion 

may occur.  

Wasserstein GANs (WGANs) are an important improvement over traditional GANs and are designed 
to solve common problems encountered during the training process of Gans, for example, mode collapse, 

training instability, and convergence difficulties [6]. The main contribution of WGAN is the introduction 

of The Earth Mover's Distance (EM distance), commonly referred to as the Wasserstein Distance, which 
replaces the Jensen Shannon divergence (JS divergence) used by traditional GANs as a loss function [7]. 

Also, WGAN ensures that the calculation of Wasserstein distance is reasonable by introducing 

Lipschitz continuity constraint into the loss function. To achieve this, WGAN uses the weight clipping, 

ensuring the weight of the discriminator is in a proper range. The weight clipping improves the stability 
of the training process. 

This work made some changes to WGAN to try to achieve better results by replacing the optimizer 

used in WGAN into others, like Adam which is commonly used. Also, this paper tried to change the 
network structure of WGAN by adding residual blocks. These changes show interesting results. 

2.  Method 

2.1.  Principle of WGAN 
The two primary parts of a GAN are a discriminator and a generator. The discriminator's job is to 

distinguish between true and false data, whereas the generator is to produce fake data that mimics the 

distribution of real data. The generator and discriminator engage in a competitive game with one another 

to optimize their individual loss functions, resulting in the generator generating realistic data. In standard 
GANs, the loss function depends on JS divergence. Sometimes training is unstable and pattern 

breakdown occurs [6]. 

In WGAN, the difference between the generated data distribution and the real data distribution is 
measured using the EM distance. 

 𝑊(ℙ𝑟, ℙ𝑔) = inf
𝛾∈(ℙ𝑟,ℙ𝑔)

𝔼(𝑥,𝑦)~𝛾[||𝑥 − 𝑦||] (1) 

, where (ℙ𝑟 , ℙ𝑔) denotes the set of all joint distributions (𝑥, 𝑦)~𝛾 whose marginals are respectively ℙ𝑟 

and ℙ𝑔. Intuitively, (𝑥, 𝑦)~𝛾 indicates how much “mass” must be transported from 𝑥 to 𝑦 in order to 

transform the distributions ℙ𝑟 into the distribution ℙ𝑔. And the EM distance then is the “cost” of the 

optimal transport plan. 

In WGAN, the discriminator is called Critic, and its task is no longer to provide the probability that 

the sample is accurate, but to output a real number that evaluates the Wasserstein distance between the 
generated image distribution and the actual image distribution. So, the discriminator attempts to 

maximize the distance between the two expectations, while the generator attempts to reduce the 

generated sample's discriminator score. Also, to ensure that the Critic meets the Lipschitz condition, 
WGAN uses weight clipping, limiting the weight to a fixed range after updating the weight of critic.  

2.2.  Model architecture 

2.2.1.  Residual Network (ResNet). ResNet is a deep convolutional neural network structure proposed 

by He Kaming et al. ResNet's primary goal is to address the issue of gradient disappearance in deep 
neural networks through the Residual Block [8]. Thus, the network can deepen the number of network 

layers while maintaining efficient learning. A typical ResNet structure consists of multiple residuals 

stacked on top of each other. In this experiment, this work replaced some of the convolution blocks in 
generator and discriminator in the original WGAN structure with ResBlocks, adding residual 

connections to the structure. Residual networks can make the network structure deeper and more 
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complex, and thus have stronger ability of extracting feature. The author tried to explore how adding a 

residual network to WGAN's architecture would affect its performance. 

2.2.2.  Densely Connected Convolutional Networks (DenseNet) is a kind of deep neural network 

designed by Gao Huang et al. It enhances the efficiency of gradient propagation by introducing dense 
connections into the network, thus improving the performance and trainability of the network [9]. In 

DenseNet, each layer receives feature maps directly from all the preceding layers as input, not just the 

result of the previous layer. The dense connection allows the features of the previous layer to be shared 
by the later layers, enhancing the training efficiency and performance of the model. 

2.3.  Optimization algorithm 

This work conducts experiments on an improved WGAN algorithm. The target distribution to learn is 

the Large-Scale Scene Understanding (LSUN) dataset, a collection of images widely used in computer 
vision research, the same dataset as used in WGAN. 

2.3.1.  Adam. Adam's main concept is to dynamically adjust each parameter's learning rate by calculating 

the first-order momentum (i.e. the mean of the gradient) as well as the second-order momentum (i.e. the 
mean of the square of the gradient). This adjustment allows Adam to use different learning rates in 

different dimensions, thus finding the optimal solution faster during training.  

2.3.2.  SGD. This approach is a variation of the conventional gradient descent method that speeds up the 
training process and increase the randomness of parameter by updating model parameters with only a 

portion of the samples at each iteration. Its advantages include low computational cost, low memory 

requirements, and suitable for processing large data sets.  

3.  Results 

3.1.  Dataset 

This work used the traditional data set cifar-10. The dataset consist of 60,000 pieces of 32x32 pixel color 

images, divided into 10 categories. This dataset is widely used in image generation and has the 
characteristics of diverse categories and standard format [11]. 

3.2.  Performance Comparison 

This paper changed some of the configuration in WGAN, especially different optimizers. Firstly, this 

work tried different optimizers to get better results, as demonstrated in Figure 1, 2,3,4,5 and 6. Secondly, 
this work tried to replace the convolutional neural network with ResNet, as shown in Figure 7 and Figure 

8. 

As can be seen from Critic loss, Adam is more effective in distinguishing between real images and 
generated images. However, the data generated by the generator is more easily recognized by the 

discriminator as fake data. Also, in SGD, the resulting pictures has noticeable blurs. 

 

Figure 1. Performance using RMSprop optimizer (Figure Credits: Original). 
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Figure 2. Representative generated images using RMSprop optimizer (Figure Credits: Original). 

 

Figure 3. Performance using Adam optimizer (Figure Credits: Original). 

 

Figure 4. Representative generated images using Adam optimizer (Figure Credits: Original). 
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Figure 5. Performance using SGD optimizer (Figure Credits: Original). 

 

Figure 6. Representative generated images using SGD optimizer (Figure Credits: Original). 

 

Figure 7. Representative generated images using ResNet (Figure Credits: Original). 
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Figure 8. Representative generated images using DenseNet (Figure Credits: Original). 

4.  Discussion 

In order to compare the influence of various changes on WGAN, this work uses four dimensions of 
100epoch, including critic loss, generator loss, Wasserstein distance, diversity.  

Among them, Critic Loss represents the model's judgment on sample generation and actual samples. 

The lower critic loss means the discriminator is more effective at telling apart real images from generated 
ones. Generator Loss reflects the difference between the generator's sample as well as the actual sample. 

The lower Generator Loss represents that the sample generated by the generator is closer to the real 

image. The Wasserstein Distance is the measurement of the separation between generator and 

discriminator from WGAN. The Diversity reflects the variety of generated samples. The higher the value, 
the greater the diversity of generated images. Moreover, the diversity is estimated by calculating the 

variance of the generated image in the feature space. 

In this work, optimizers achieve various performance. For RMSprop, just like it said in the original 
WGAN, the effect of RMS is pretty standard. For Adam, the use of Adam brings some interesting 

changes compared to the original RMSprop. According to Critic Loss, RMSprop is not as good as Adam, 

which lets the discriminator do a better job of distinguishing between real and generated ones. When it 

comes to generator loss, the sample generated by RMSprop is closer to the real ones. Also, in terms of 
Wasserstein Distance, Adam performed less well than RMSprop. The samples generated by the 

generator showed higher diversity in the Adam case. For SGD, the effect of SGD does not seem to be 

that ideal. After a relatively big up-and-down, the critic loss, the generator loss and the Wasserstein 
distances all collapse, showing an abnormal level of stability. Various reasons may have contributed to 

this result. Perhaps SGD introduces large gradient noise by updating model parameters using only a 

small number of samples at a time, which may result in unstable updates. 
As for models, ResNet works just fine, the output picture shows a good effect without collapse. 

Although the various values of ResNet fluctuated greatly, the final results were satisfactory. The ResNet 

can be used as the direction of improvement. DenseNet is doing just fine. Critic loss and generator loss 

are relatively stable. However, DenseNet's Wasserstein distance is large, which means that the pictures 
it produces are not as realistic as WGAN's. It could be seen from the generated picture that after 50 steps, 

the picture shows a relatively monotonous color and the effect becomes worse. 

After trying a variety of modifications, it could be found that some modifications would not achieve 
the desired effect because of the incompatibility with the model and other reasons. In some cases, the 

phenomenon of rapid attenuation of learning rate and gradient explosion occurs, resulting in poor quality 

of the generated images. It is expected to continue to try to make modifications to the WGAN structure, 
adjust parameters, adopt new network structures or optimize the code so that the changes blend better 

with the original WGAN structure. 

5.  Conclusion 

On the whole, this paper has achieved constructive results. Based on WGAN, some changes are made 
to see if they lead to better results. All experiments are based on LSUN in order to be consistent with 
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WGAN. This work used control variables and comparison methods. First, this work kept the network 

architecture unchanged and tried a variety of different optimizers. This paper tried the usual optimizers 

like Adam and SGD. Some of them have shown good results, such as Adam. However, some optimizers 

show less than satisfactory results, there have even been serious problems, such as gradient explosions. 
These results provide us with important references. And this work tried to change the network 

architecture, adding ResNet and DenseNet into the generator and discriminator. WGAN with ResNet 

has shown promising results, while the images generated by DenseNet are of poor quality.  To conclude, 
experiments show the potential and possibilities of WGAN. These attempts gave us ideas and experience 

to improve WGAN. In the future, it is expected to expand the thinking further and try to improve WGAN 

even more. If possible, this work could extend WGAN to other generation tasks, such as text generation, 

and explore the effects of various components on the performance of WGAN. 
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