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Abstract. High-frequency trading (HFT) has transformed financial markets by enabling rapid 

trade execution and exploiting minute market inefficiencies. This study explores the application 

of machine learning (ML) techniques to predictive modeling in HFT. Four ensemble boosting 

methods—Adaptive Boosting, Logic Boosting, Robust Boosting, and Random Under-Sampling 

(RUS) Boosting—were evaluated using order book data from Euronext Paris. The models were 

trained and validated on data from a single trading day, with performance assessed using 

precision, recall, ROC curves, and feature importance analysis. Results indicate that Robust 

Boosting achieves the highest precision (90%), while Adaptive Boosting and RUS Boosting 

demonstrate higher recall (94% and 93%, respectively). This research highlights the potential of 

ML in enhancing HFT strategies, with implications for future trading system developments. 
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1.  Introduction 

High-frequency trading (HFT) has significantly transformed financial markets by leveraging advanced 

algorithms and high-speed data processing to execute trades at unprecedented speeds. These systems 

exploit minute price discrepancies and market inefficiencies, often completing thousands of trades 

within fractions of a second. As competition in financial trading intensifies, there is a growing demand 

for advanced predictive models to enhance trading performance. The core of predictive modeling in 

HFT is its ability to forecast various market behaviors, such as price movements, trading volumes, and 

volatility. Accurate predictions enable traders to make informed decisions, optimize trade execution, 

and manage risks effectively. Traditional statistical methods, while useful, often fall short in capturing 

the complex and dynamic nature of financial markets. 

Machine learning (ML) offers powerful tools for developing predictive models, thanks to its 

capability to analyze vast datasets and identify intricate patterns. As financial markets continue to evolve, 

integrating ML techniques in HFT promises to drive further innovations and enhance trading 

performance. ML algorithms can learn from historical data and adapt to new information in real-time, 

enhancing the precision and reliability of market predictions. Consequently, ML has become a 

cornerstone of contemporary HFT strategies. Predictive modeling using machine learning provides 

significant advantages in forecasting market behaviors and optimizing trading strategies. Despite the 

advancements, existing studies often rely on models that require trader ID, which is only available to 
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exchange authorities. This research aims to bridge this gap by developing ML models that do not require 

trader IDs, thus making the models more accessible and practical for broader use. 

This study explores the application of machine learning (ML) techniques to predictive modeling in 

HFT. Four ensemble boosting methods—Adaptive Boosting, Logic Boosting, Robust Boosting, and 

Random Under-Sampling (RUS) Boosting—are evaluated using order book data from Euronext Paris. 

The models are trained and validated on data from a single trading day. 

2.  Literature Review 

2.1.  Applications of Machine Learning in High-Frequency Trading 

Supervised Learning: Algorithms such as linear regression and support vector machines (SVMs) are 

widely used for predicting financial time series data. Studies have shown that these algorithms perform 

well in modeling nonlinear relationships between market variables [1, 2]. Neural networks, particularly 

long short-term memory (LSTM) networks, are extensively used for price prediction and market 

behavior forecasting due to their ability to handle sequential data and capture temporal dependencies 

[3]. 

Unsupervised Learning: Techniques such as clustering and anomaly detection are used to uncover 

hidden patterns and structures in market behavior. These methods help identify potential trading 

opportunities and market anomalies [4]. Research indicates that market pattern recognition based on 

unsupervised learning plays a crucial role in developing HFT strategies [5]. 

Reinforcement Learning: Reinforcement learning, which involves learning optimal decisions 

through interaction with the environment, has shown great potential in HFT. Studies have found that 

reinforcement learning algorithms can continuously optimize trading strategies to adapt to changing 

market conditions, thereby improving trading performance and profitability [6, 7]. 

2.2.  Data Preprocessing and Feature Engineering 

Data quality and feature engineering are critical in building reliable predictive models. HFT relies on 

high-quality, high-frequency data collected from various sources such as market data, order books, and 

news feeds. Data preprocessing involves removing noise and outliers, while feature engineering involves 

creating relevant features that capture market dynamics, such as technical indicators, order book depth, 

and sentiment scores [8, 9]. 

Model Evaluation and Validation: Ensuring that models generalize well to unseen data and 

perform robustly under various market conditions is essential. Techniques such as cross-validation and 

historical data backtesting are commonly used to evaluate model performance and validate their 

effectiveness [10, 11]. 

Real-Time Implementation and Scalability: Predictive models in HFT require a robust 

infrastructure capable of processing streaming data and executing trades with minimal latency. 

Technologies such as Apache Kafka and Spark Streaming facilitate real-time data processing, while 

specialized hardware and co-location services ensure low-latency execution [12, 13]. Scalability is also 

a key consideration, as HFT systems must handle increasing data volumes and trading activity without 

compromising performance [14]. 

3.  Methodology 

3.1.  Data Collection and Preprocessing 

We evaluated predictive models for high-frequency trading (HFT) by training four models using data 

from May 4th, 2017. These models utilized ensemble boosting methods: Adaptive Boosting, Logic 

Boosting, Robust Boosting, and Random Under-Sampling (RUS) Boosting. Validation was conducted 

using a hold-out set from the same trading day. 

Data collection encompassed high-frequency trading data from stock exchanges, order book 

snapshots, and sentiment data from news, financial reports, and social media. Preprocessing involved 
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noise removal, anomaly detection, and normalization. Noise and irrelevant data points were removed 

using statistical methods, while anomalies were handled using z-score and interquartile range (IQR) 

algorithms. Data normalization was achieved through Min-Max scaling and Z-score normalization to 

standardize feature scales. 

Feature engineering involved the creation of features capturing market dynamics. Technical 

indicators (e.g., moving averages, RSI, MACD) were derived from historical price data to provide 

insights into market trends and momentum. Order book features, including depth, bid-ask spread, and 

Volume Weighted Average Price (VWAP), assessed market liquidity. Sentiment analysis via natural 

language processing (NLP) techniques extracted sentiment scores from textual data, serving as 

additional model features. 

3.2.  Training Models 

We utilized supervised learning models, including linear regression, support vector machines (SVMs), 

and neural networks, to handle sequential data and capture temporal dependencies, with long short-term 

memory (LSTM) networks being particularly effective for time series forecasting. Unsupervised 

learning models, such as K-means, DBSCAN, Isolation Forest, and Autoencoders, were employed to 

identify hidden patterns and market anomalies. Reinforcement learning models, including Q-learning 

and Deep Q-Networks (DQN), optimized trading strategies based on rewards from market interactions. 

Model performance was evaluated using cross-validation techniques, such as k-fold cross-validation 

and time-series-specific methods, and backtesting on historical data. Performance metrics included 

accuracy, precision, recall, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). 

Robustness was ensured through stress testing under extreme market conditions and sensitivity analysis 

to understand the impact of input parameter changes. 

3.3.  Real-Time Implementation and Scalability 

Real-time implementation required a robust infrastructure to process streaming data and execute trades 

with minimal latency. Technologies such as Apache Kafka and Spark Streaming facilitated real-time 

data processing, while specialized hardware and co-location services minimized trade execution latency. 

Scalability was ensured using distributed computing frameworks like Hadoop and Spark, along with 

scalable cloud infrastructure, to manage large-scale data processing and storage efficiently. 

4.  Results and Discussions 

Table 1 shows the evaluation metrics for each model. Adaptive Boosting achieved high recall (94%), 

indicating a strong ability to detect actual HFT instances, though its precision was slightly lower (85%), 

suggesting some false positives; the high recall ensures most HFT activities are detected, but the lower 

precision indicates a higher rate of misclassification of non-HFT as HFT. Logic Boosting demonstrated 

a balanced performance with an 88% precision and 91% recall, showing consistent results but was 

slightly less effective in recall compared to Adaptive Boosting; this balance makes it a reliable choice 

when both metrics are crucial. Robust Boosting achieved the highest precision (90%), making it the 

most reliable in predicting true HFT instances, but its recall (88%) was lower, indicating a trade-off; this 

model is preferable when the cost of false positives is high, and accuracy in identifying HFT is more 

critical. RUS Boosting offered a good balance with a 93% recall and 87% precision, effectively handling 

class imbalance but requiring careful resource management due to computational demands; this model 

is suitable when the primary goal is to maximize the detection of all HFT instances. The Receiver 

Operating Characteristic (ROC) curves visualize the trade-offs between true positive rates (sensitivity) 

and false positive rates, allowing for a comparative analysis of the models' performance; all four methods 

showed strong ROC curves, indicating effective discrimination between HFT and non-HFT instances. 
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Table 1. Evaluation Metrics for Boosting Methods 

Model Precision Recall (Sensitivity) Specificity Misclassification Error 

Adaptive Boosting 85% 94% 87% 10% 

Logic Boosting 88% 91% 89% 10% 

Robust Boosting 90% 88% 91% 11% 

RUS Boosting 87% 93% 88% 10% 

 

The feature importance scores of each method are shown in Table 2. These scores denote the 

important features used by the models and provide insights into which factors are most influential in 

predicting HFT activities. The results indicate that all four boosting methods performed well in 

identifying high-frequency trading activity, with slight variations in their precision, recall, and 

specificity. Among the models, Robust Boosting achieved the highest precision (90%), indicating a 

strong capability in correctly predicting HFT instances. However, it showed slightly lower recall (88%) 

compared to Adaptive Boosting and RUS Boosting, which both demonstrated higher sensitivity (94% 

and 93%, respectively). This trade-off between precision and recall is typical in classification tasks and 

highlights the importance of selecting a model based on the specific requirements of HFT detection. The 

analysis revealed that moving averages, order book depth, and sentiment scores were consistently 

important across all models. 

Table 2. Feature Importance Scores 

Feature Adaptive Boosting Logic Boosting Robust Boosting RUS Boosting 

Moving Average 0.35 0.30 0.32 0.33 

Order Book Depth 0.25 0.28 0.27 0.29 

Sentiment Score 0.20 0.22 0.21 0.21 

Bid-Ask Spread 0.10 0.08 0.09 0.07 

VWAP 0.10 0.12 0.11 0.10 

5.  Conclusion 

This research developed and evaluated machine learning models for predicting high-frequency trading 

(HFT) using public order book data, focusing on four ensemble boosting methods: Adaptive Boosting, 

Logic Boosting, Robust Boosting, and RUS Boosting. Each method exhibited distinct strengths. 

Adaptive Boosting exhibited high recall, making it effective for detecting actual HFT instances, albeit 

with lower precision. Logic Boosting provided a balanced performance across precision and recall, 

making it reliable for scenarios requiring both metrics. Robust Boosting achieved the highest precision, 

making it the best for correctly predicting HFT instances, although its recall was somewhat lower. RUS 

Boosting managed class imbalance effectively, showing a good balance between recall and precision, 

making it suitable for maximizing HFT detection. 
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