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Abstract. Artificial Intelligence Generated Content (AIGC) has rapidly evolved, revolutionizing 
the creation of text, images, audio, and video content. Despite these advancements, research on 
the development process of AIGC technology remains scarce, necessitating a systematic 
discussion of its current state and future directions. So this paper delves into the significant 
advancements and foundational technologies driving AIGC, emphasizing the contributions of 
state-of-the-art models such as DALL-E 3 [1] and Sora [2]. We analyze the evolution of 
generative models from single-modal approaches to the current multimodal generative models. 
The paper further explores the application prospects of AIGC across various domains such as 
office work, art, education, and film, while addressing the existing limitations and challenges in 
the field. We propose potential improvement directions, including more efficient model 
architectures and enhanced multimodal capabilities. Emphasis is placed on the environmental 
impact of AIGC technologies and the need for sustainable practices. Our comprehensive review 
aims to provide researchers and professionals with a deeper understanding of AIGC, inspiring 
further exploration and innovation in this transformative domain. 

Keywords: Artificial Intelligence Generated Content, Neural Networks, Multimodal Generative 
Models, Large AI Models. 

1.  Introduction 
Artificial Intelligence Generated Content refers to the use of generative AI technologies to automatically 
create text, images, audio, or video content. In recent years, AIGC has advanced rapidly, with numerous 
exceptional models emerging, such as Llama 3 [3] and Sora. OpenAI's DALL-E 3 can produce high-
quality images from simple text descriptions, while the Sora model, released in February 2024, can 
generate high-quality videos based on user text inputs, significantly streamlining the video creation 
process. Sora represents a significant breakthrough in generative AI models, poised to disrupt related 
industries and profoundly impact academia and society. 

The rapid development of AIGC is largely due to the advancement of algorithms for large models, 
making AIGC products promising tools that enhance our lives. In recent years, multimodal technology 
has seen substantial progress, enabling multimodal generative models to process and produce 
information across various data types, achieving cross-modal content generation. Examples include 
DALL-E 3, Parti [4], and Vidu [5]. The Vidu model, released on April 27 2024, can generate high-
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definition videos up to 16 seconds long with a resolution of 1080P. The iteration of AIGC products and 
models is extremely rapid, with their capabilities and generalization continuously improving. 

 
Figure 1: Relation between existing representative large AI models and AIGC.  

Technological advancements and foundational hardware upgrades in recent years have provided 
significant momentum for the AIGC field. Progress in large model [6,7] has allowed for the scaling up 
of models, enhancing both parameters and performance limits. Larger datasets [8–11] have highlighted 
the importance of data engineering, significantly improving data quality and quantity. Hardware 
advancements have enabled academia to build more powerful data and computing centers, supporting 
the training of large models. 

The main contributions of this paper are as follows: 
• This paper provides a detailed overview of the foundational technologies of image generation 

models in generative AI, including the principles of underlying model architectures and the 
integration of modal generation. It offers a comprehensive analysis of visual AIGC tasks and 
models from both single-modal and multi-modal perspectives. 

• This paper reviews and analyzes the recent advancements and current development status of 
AIGC technology, discussing its application prospects. 

• This paper focuses on the existing limitations of AIGC technology and corresponding 
improvement directions. We discuss the challenges faced by the AIGC field, the potential social 
impacts, and propose possible solutions and feasible directions. 

The remainder of this paper is structured as follows: The first section introduces the history and 
foundational models of single-modal generation models. The second section summarizes the 
characteristics and development of multimodal generative models. The third section presents the 
development status and applications of AIGC technology. The fourth section highlights the current 
limitations, challenges, and potential solutions and feasible directions of AIGC technology. Finally, we 
conclude with a summary of our research findings. 

2.  Vision Generative Models 
In this section, we focus on visual unimodal generative models, which accept single-modal inputs such 
as image-level noise [12] and specific noise sequences to generate image data. 

The history of generative models dates back to the Gaussian Mixture Models (GMMs) [13] of the 
20th century. GMMs generate specific data distributions by combining multiple Gaussian distributions. 
Traditionally, there was limited overlap between different fields of AIGC. In the field of NLP, N-gram 
language models [14] were used to learn word distributions, while in the CV field, algorithms like 
texture synthesis [15] and image editing [16] were commonly used, which limited diversity in generation. 

With the advent of neural network algorithms [17], Recurrent Neural Networks (RNN) [18] and 
subsequent improvements like Long Short-Term Memory (LSTM) [19] and Gated Recurrent Units 
(GRU) [20] were introduced into language modeling tasks with notable success. Variational 
Autoencoders (VAE) [21] provided finer control for image generation in the CV field. The Generative 
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Adversarial Network (GAN) [22], proposed in 2014, marked a significant milestone in image generation, 
as GANs can generate high-quality, photorealistic images through adversarial training between the  

 
Figure 2: The history of Generative AI in unimodal and multimodal.  

generator and discriminator. Diffusion models [23], introduced in 2020, add noise to real images 
gradually using Markov chains, and then learn Markov transition kernels to achieve reverse diffusion. 
These models have become a mainstream paradigm in AIGC. This section will mainly cover four types 
of single-modal generative models: VAE, GAN, Autoregressive models, and Diffusion models. 

VAE. VAE, a generative network structure based on variational Bayesian inference, was proposed 
in 2014. The traditional VAE consists of an encoder and a decoder. After training, the encoder 
transforms the input 𝑋 into a latent vector 𝑍, while the decoder samples points z from the latent variable 
distribution to reconstruct the original input. 

The core idea of VAE is to treat the encoder's output as a probability distribution, i.e., the latent 
vector. The decoder reconstructs the original input from this probability distribution. The latent vector 
represents the probability distribution of the latent features of the image, and the decoder samples points 
from the latent vector space using reparameterization: 

 𝑧 = 𝜇!(𝑥) + 𝜎!(𝑥) ⋅ 𝜖 (1) 

where 𝜇!(𝑥), 𝜎!(𝑥)represent the mean and standard deviation of the input data, respectively, while 
𝜖 denotes noise from a standard normal distribution. 

To constrain the latent vector distribution, VAE's optimization objective comprises reconstruction 
loss and KL divergence [24]: 

 ℒ(𝜃, 𝜙; 𝑥) = −𝐸"(𝑧|𝑥)[𝑙𝑜𝑔 𝑝 (𝑥|𝑧)] + 𝐾𝐿<𝑞(𝑧|𝑥) | 𝑝(𝑧)? (2) 

where ℒ is the loss function, 𝜙, 𝜃 are the parameters of the encoder and decoder. 𝑝(𝑥|𝑧)represents 
the likelihood of the data given the latent variable 𝑧, 𝑞(𝑧|𝑥) denotes the conditional distribution of the 
latent variable 𝑧, and 𝑝(𝑧) is the prior distribution. 

VAE provides a strong theoretical foundation and model basis for subsequent image generation work, 
leading to numerous improvements. ELBO improves the variational bounds, balancing reconstruction 
error and latent space distribution differences, enabling the model to generate new samples similar to 
real data. Wasserstein VAE [25] uses the Wasserstein distance instead of KL divergence to enhance 
training stability. Beta-VAE [26] introduces an adjustable hyperparameter β to control the weight of the 
KL divergence term, improving the model's disentangling ability and interpretability. VQVAE [27] 
discretizes the latent variables, generating a set of discrete codebooks, and combines these codebooks 
to create a prior, resulting in the final image. VQVAE2 [28] builds on this by layering the encoder and 
decoder, modeling different levels of features separately, producing highly impressive results. 

GAN. Since its introduction in 2014, GANs have achieved remarkable success in image generation. 
The core concept of GANs involves generating realistic images through the adversarial interaction of 
two neural networks, the generator and the discriminator. The generator learns to produce data that 
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mimics the real data distribution, while the discriminator learns to distinguish whether the input data is 
real or generated. 

The vanilla GAN's optimization objective is defined as follows: 

 𝑚𝑖𝑛
&
𝑚𝑎𝑥
'

𝑉 (𝐷, 𝐺) = 𝐸(∼*!"#"(()[𝑙𝑜𝑔𝐷 (𝑥)] + 𝐸+∼*$(+) G𝑙𝑜𝑔 H1− 𝐷<𝐺(𝑧)?IJ (3) 

where 𝐺 represents the generator, 𝐷 represents the discriminator, 𝑝,-.- is the real data distribution, 
and 𝑝+(𝑧) is the input distribution.  

 
Figure 3: A brief overview of vision generative models.  

In fact, this optimization creates a zero-sum game (minimax game) between the two networks. 
Theoretically, when the generator and discriminator reach a Nash equilibrium, the generated data will 
become indistinguishable from real data by the discriminator, meaning the generated data distribution 
closely approximates the real data distribution, significantly enhancing the realism of the generated 
images. 

With deeper research into GANs, several training challenges were identified, such as mode collapse 
and training instability. To address these, Mirza and Osindero introduced Conditional GAN [29], which 
add conditional information into the generator and discriminator inputs, enabling the generation of data 
with specific attributes. Radford et al. introduced Deep Convolutional GAN(DCGAN) [30], which 
employ a fully convolutional architecture to improve the quality of generated images. Arjovsky et al. 
proposed the Wasserstein GAN [31], using the Wasserstein distance as the optimization objective and 
weight clipping to maintain the Lipschitz constraint, thereby improving training stability. Zhu et al. 
developed CycleGAN [32], which incorporates cycle consistency to allow the input image to be 
reconstructed back to the original without paired training samples, making it highly effective for style 
transfer tasks. Zhang et al. introduced the Self-Attention GAN (SAGAN) [33], incorporating a self-
attention mechanism to improve the model's ability to capture long-range dependencies, enhancing both 
the overall coherence and fine details of generated images.  

AR models. Autoregressive models are widely used in time series analysis [34]. They predict the 
next element in a sequence by modeling the interdependencies among the elements of the sequence. In 
the field of image generation, a notable work using autoregressive models is PixelRNN [35], proposed 
in 2016. PixelRNN treats pixels as a sequential series, where each pixel depends on the preceding ones, 
allowing for pixel-by-pixel prediction using a recursive method. The model employs the chain rule to 
decompose the likelihood of a data sample x into a product of one-dimensional distributions, and then 
uses an LSTM-based model to learn and predict these distributions. PixelCNN [36] uses masked 
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convolution, efficiently learning pixel distributions through the sliding of convolution kernels and the 
application of masks, thus generating images. GatedPixelCNN incorporates LSTM gate mechanisms 
into the convolution process and decomposes masked convolutions to address the receptive field blind 
spot problem. VQGAN [37] exemplifies a combination of autoregressive models, GAN, and VAE. It 
generates discrete sequences by dividing images into patches and encoding them into a codebook. The 
decoder then reconstructs the codebook sequences. Simultaneously, VQGAN trains an autoregressive 
sequence prediction model to predict the codebook sequences autoregressively during inference, 
ultimately generating a complete image. 

Diffusion. Diffusion models have recently achieved breakthrough progress in the field of image 
generation. The core idea of these models is to gradually add noise to data and then learn how to reverse 
this process to generate data, particularly images. Diffusion models have become a mainstream approach 
in image generation. These models are based on a progressive process where data samples are gradually 
transformed by adding noise until they become pure noise. This process can be viewed as a Markov 
chain that starts from the data distribution and transitions to a pure noise distribution. 

 𝑞(𝑥.|𝑥./1) = 𝒩<𝑥.; L1− β.𝑥./1, β.𝐼? (4) 

where β. denotes the noise level, 𝒩 represents the Gaussian distribution. 
During training, the generative model learns to reconstruct data from noise, effectively reversing the 

Markov chain process: 

 𝑝θ(𝑥./1|𝑥.) = 𝒩<𝑥./1; μθ(𝑥. , 𝑡), σ.
2𝐼? (5) 

Diffusion models learn across multiple time steps how to reconstruct data from a noisy state, 
contrasting with traditional GANs or VAEs. A key advantage of diffusion models is their ability to 
maintain high diversity and consistency in generated images, thereby avoiding the mode collapse issue 
commonly seen in GANs. 

DDIM [38] represents a significant improvement by reducing sampling steps to accelerate generation 
while ensuring high-quality content. This advancement facilitated the creation of the notable AIGC 
open-source project, Stable Diffusion [39]. Ho et al. [40] enhanced the quality and detail of generated 
images by adjusting parameters directly during training and sampling, improving performance under 
unsupervised conditions. Rombach et al.  [39] make process occur in a low-dimensional latent space, 
and a decoder converts these representations back into high-resolution images, significantly improving 
image resolution and visual quality. Song et al. [41] employ stochastic differential equations to simulate 
a continuous diffusion process, offering a theoretically rigorous and flexible method to handle complex 
data distributions, further enhancing the generative capability and application range of the model. 

These advancements not only enhance the functionality and efficiency of diffusion models but also 
expand their potential applications in high-quality image generation, demonstrating their broad 
applicability and superior performance in various image and data generation tasks. 

Table 1.Multimodal models and their supported modalities. 

Modality 
Input Output 

text audio image video text audio image video 
GPT-3, llama ü    ü    
wav2vec-U  ü   ü    

Imagen, Dall-E ü      ü  
Flamingo ü  ü ü ü  ü  

Sora ü ü ü ü ü ü ü ü 
GPT-4 ü ü ü ü ü  ü  
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3.  Multimodal Generative Models 
Multimodal generation represents a crucial component and development trend within the AIGC field. 
The powerful foundational models and advancements previously discussed offer a solid basis for further 
multimodal research. The introduction of attention mechanisms [42] and Transformers [43] has created 
new possibilities for handling complex multimodal data and integrating various modalities. In computer 
vision, multimodal generative models primarily rely on GAN and Diffusion models, integrating new 
modalities and establishing connections between them to achieve multimodal generation. Recent works 
can generally be categorized into three types: GAN-based, VAE-AR-based, and Diffusion-based models. 

GAN-based Models: Early generative models predominantly utilized GAN architectures, resulting 
in significant progress in text-to-image generation. StackGAN [44] employs a two-stage GAN structure: 
the first stage generates the primary structure and shape of objects from text, while the second stage 
refines this into high-resolution images. In 2018, Tao Xu et al. [45] uses an attention generative network  

 
 

and a deep attention multimodal similarity model (DAMSM) to synthesize images from text descriptions 
through multiple stages. GigaGAN [46] explores the performance of large-scale GANs on extensive 
datasets, highlighting GANs' advantages in generation speed and high-resolution image production. 

 
Figure 3: The structure of Parti (GAN-based) and Dall-E 2 (Diffusion-based).  

VAE-AR-based Models: ViT-VQGAN combines the ViT [47] encoder with the VQGAN structure, 
resulting in an improved codebook and quantization process. Parti [4] represents a large-scale 
implementation of ViT-VQGAN, incorporating a large NLP model text encoder for processing text 
inputs. Muse [48], another VQGAN variant, uses a fully CNN-based VQencoder-VQdecoder structure 
for image input, accommodating variable resolution inputs and employing an external super-resolution 
Transformer to produce high-resolution images. Both models exemplify text-to-image generation with 
notable performance and generalization capabilities. DALL-E [49] integrates dVAE [27], Transformer, 
and CLIP [50] models, each trained independently, resulting in a logically coherent model capable of 
understanding semantic information clearly. 

Diffusion-based Models: Diffusion models have rapidly gained prominence in image generation, 
with numerous efforts to incorporate text modalities. The GLIDE [51] model introduces an ablated 
diffusion model for the generation process, leveraging larger models and paired datasets for training. 
Imagen [52] utilizes the T5 [53] model as a text encoder and employs two diffusion models for 
generating low and high-resolution images, effectively handling text generation and super-resolution 
tasks. DALL-E 2, built on a diffusion-based framework derived from GLIDE, maps image descriptions 
from the CLIP text encoder to the representation space, followed by diffusion priors mapping to the 
CLIP image encoding, and finally, the GLIDE generative model uses reverse diffusion to produce 
images. DALL-E 3 enhances this process by integrating GPT [54–57], improving the precision of 
prompt-to-image conversion. 
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4.  Applications 
AIGC has made significant technical advancements and continues to progress. At the same time, AIGC 
technology demonstrates extensive application potential in various fields such as office work, art, film 
and television, and education. Despite some controversies over its use, the immense convenience 
provided by AIGC makes it hard to resist. The deep integration of AIGC into everyday life is imminent. 

Office Work: The development and application of AIGC in office environments are enhancing 
productivity and efficiency in numerous ways. Microsoft has introduced AI-driven tools like Copilot 
[58] in Windows and Office applications, leveraging GPT-4 to assist with data analysis, content 
generation, and even data predictions using web and internal information [59]. Companies like Synthesia 
are developing tools for creating deepfake avatars for training and marketing purposes, simplifying the 
production of high-quality video content [60]. 

Art: AIGC's application in art is widespread, enabling creators to produce complex artworks at 
unprecedented speeds. DALLE-2 [61] has helped numerous users create visual stories, illustrations, 
animations, and digital content, making it an essential tool for visualizing concepts, designing unique 
works, and even creating entire art collections. HitPaw's 4AiPaw allows users to experiment with 
different styles and prompts, facilitating various artistic expressions through a single text input. 
DreamStudio, developed by Stability.ai, uses diffusion models to generate high-resolution images from 
text prompts, becoming a popular choice among users. Palette [62] incorporates AI coloring technology, 
effectively replacing traditional manual coloring processes and significantly enhancing drawing and 
artistic creation efficiency. 

Education: In education, AIGC can enhance learning experiences and materials. Teachers can use 
the DALL-E series models [1,49,61] to generate visual representations of historical events or complex 
scientific processes, aiding students in visual learning. These models can also generate custom images 
for textbooks and presentations, thereby concretizing abstract concepts and improving students' 
understanding and memory of classroom content. In the field of mathematical tasks, Google Research 
has introduced Minerva [63], capable of solving academic quantitative problems in algebra, probability, 
and physics. 

Film and Television: In the short drama industry, some content creators are beginning to use AIGC 
tools to expand their market, including face-swapping technology to change actors' faces to those 
familiar to target market audiences. Heygen [64], for instance, uses AIGC to instantly generate digital 
human videos resembling users and provides a rich library of backgrounds and templates. Platforms like 
QuickVid integrate text generation from GPT-4 and text-to-image models like DALL-E 2 to create 
complete video clips from brief text inputs. OpenAI's Sora model can generate complex scenes with 
multiple characters and detailed backgrounds from text prompts, enabling creators to quickly visualize 
and produce high-quality video content with minimal effort. 

5.  Limitations and Future directions 
The rapid development of artificial intelligence has made the future of AIGC brim with potential. 
However, it is evident that current technologies and models still have many problems and shortcomings. 
We can foresee numerous innovations and advancements in the coming years. This section will discuss 
the current flaws and issues of AIGC and tentatively propose solutions and possible future directions 
for development. 

More Efficient Model Architectures: While current AIGC models are highly powerful, since the 
advent of Transformers, large-parameter Transformer-like structures have dominated the field, 
including models like DALL-E, Parti, Sora, and Llama. In Diffusion-based models, attention 
mechanisms have become crucial for multimodal connections, as seen in Stable Diffusion, DALL-E 2, 
and Imagen. However, the computational complexity of attention mechanisms grows quadratically with 
the input sequence length, leading to substantial computational and resource costs. Consequently, it is 
challenging for most individual users to deploy and train large AIGC models. Future model architectures 
need to be more efficient, maintaining or enhancing the generative capabilities of existing models while 
consuming fewer computational resources, thus reducing dependence on computing power. For instance, 

Proceedings of  the 6th International  Conference on Computing and Data Science 

DOI:  10.54254/2755-2721/95/2024BJ0056 

7 



 

 

Rewon Child et al. [65] proposed the Sparse Transformer to reduce the complexity of the transformer’s 
attention mechanism. Optimizing model architecture can adjust computational resources and enhance 
computation speed, thereby broadening the application scenarios of AIGC technology. 

Enhanced Multimodal Capabilities: Current text-to-image models can generate high-quality 
images from text descriptions, but these images still have some defects and biases [66,67]. For instance, 
the generated images are often rich in color and complexity, but they struggle with generating simple 
and abstract images. Additionally, there are biases in images generated from vague text descriptions, 
such as DALL-E 3's admitted tendency to produce images depicting primarily white, young, and female 
characters when describing people. In this context, future enhancements in multimodal capabilities must 
address these issues. One potential solution is machine unlearning [68], which aims to remove biased 
data from model training. Future advancements should involve developing sophisticated algorithms to 
handle abstract concept representations and correct biases in the generative process, thereby endowing 
models with deeper contextual understanding to better meet user needs in creation, design, and other 
fields. 

 
Figure 4: Illustration of Modality Bias in face generation [69],  “Multimodal-to-Image” is highly 
consistent with “Segmentation-to-Image,” while the information in text like “sideburns” is not fully 
utilized, which implies the generation is biased towards the modality of segmentation. 

Deeper Content Personalization and Broader Modal Integration: Research on AIGC technology 
in more modalities remains relatively immature. By deeply learning user preferences and behaviors, and 
combining this with advanced recommendation systems, AIGC models can provide more customized 
content generation services. Current models also show insufficient capabilities in modal integration. For 
example, Su et al. [69] have found that models have strong modal biases when generating faces, 
indicating a strong correlation between multimodal generated face images and 'Segmentation-to-Image'. 
Therefore, a significant research direction for the future is enhancing the ability to process more modal 
data and fully utilizing the differential features of multimodal inputs to generate image data that better 
meets user needs. 

Collaborative Global Research Framework: The current AIGC technology environment still faces 
issues such as inconsistent standards, unclear frameworks, technology misuse, and security challenges. 
Standardized and regulated technical research frameworks are the cornerstone of ensuring the reliability 
and compatibility of AIGC technology globally. In the future, we foresee international organizations 
and research institutions working together to issue a series of unified technical standards. These 
standards will cover various aspects such as model training, content generation, and user privacy 
protection, aiming to ensure the fair use of technology, prevent misuse, and promote the accessibility of 
technology across cultures and languages. By adhering to these common standards, the development 
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and deployment of AIGC technology will become more transparent, fostering global trust and 
acceptance of these technologies. 

Energy and Carbon Emissions: Larger models lead to greater resource demands and increased 
carbon emissions. ChatGPT, for instance, responds to approximately 200 million requests daily, 
consuming over 500,000 kWh of electricity. The GPT-3 model, which serves as the foundation for 
ChatGPT, emitted 502 metric tons of carbon during its training [70]. Llama 3's model pre-training 
required 7.7 million GPU hours [71], with total carbon emissions equivalent to 2,290 tons of CO2. While 
AI enhances efficiency, it also poses potential energy crises and environmental pollution. Future 
development directions must include sustainability plans to optimize and offset the significant energy 
consumption and carbon emissions generated by model training. 

6.  Conclusion 
This paper thoroughly investigates the historical development, foundational technologies, and 
underlying principles of image generation models. It provides a comprehensive analysis of generative 
models from both single-modal and multimodal perspectives. Additionally, the paper explores the latest 
applications and current advancements in AIGC technology, examining in detail the societal 
transformations and impacts brought about by AIGC. Based on the current technical shortcomings of 
AIGC, the paper proposes potential improvements and feasible directions, and discusses the future 
development of AIGC models, emphasizing the integration of scientific and humanistic aspects. This 
paper aims to help researchers and related professionals gain a deeper understanding of this field through 
a detailed investigation of AIGC image generation models, and to inspire further exploration and 
research in the AIGC domain. 
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