
 

CN-ViT- Visual Object Detection with VisionTransformer 

Chuan Wang 

School of Software, Taiyuan University of Technology, Shanxi, China 

wangchuan5846@163.com 

Abstract. Object detection has always been an important and challenging task in the field of 

computer vision. In recent years, Vision Transformers (ViT) have achieved remarkable results 

on image classification tasks, demonstrating its potential in vision tasks. In this paper, we 

propose CN-ViT, a novel Vision Transformer based visual object detection model.CN-ViT 

effectively improves the accuracy and robustness of object detection by combining the 

advantages of self-attention mechanism and convolutional neural network, and introducing the 

GCCA (Global Context Block and Coordinate Attention) module. In this paper, CN-ViT is 

evaluated on the Mini COCO standard dataset. The experimental results suggest that CN-ViT 

may outperform current mainstream object detection methods in terms of detection accuracy 

and speed. This study sheds light on the potential of Transformer architectures for complex 

visual tasks and offers valuable insights for future research in this area. 
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1.  Introduction 

Object detection is one of the core problems in computer vision, whose task is to identify and locate 

objects in images. Object detection techniques have broad application prospects in many fields such as 

autonomous driving, surveillance monitoring, and medical image analysis, and have always been a 

research hotspot [1]. Traditional object detection methods mainly rely on Convolutional Neural 

Networks (CNNs), such as Faster R-CNN, YOLO, and SSD models, which have achieved significant 

success in many application scenarios [2-8]. However, as the task complexity increases, traditional 

methods still face many challenges in dealing with multi-scale targets, complex backgrounds, and 

occlusion problems. 

In recent years, the Transformer architecture has achieved great success in natural language 

processing (NLP) and has gradually been introduced into computer vision tasks. Transformer uses the 

self-attention mechanism to capture global information and overcomes the limitations of traditional 

convolutional neural networks in handling long-distance dependencies and global feature extraction. 

Vision Transformer (ViT) is an image classification model based on Transformer, which overcomes the 

problem of the input image size being too large by dividing the image into fixed-size blocks and 

inputting the features of these blocks into the Transformer for processing [11]. ViT has demonstrated its 

strong performance in image classification tasks. Despite this, directly applying ViT to the object 

detection task still faces challenges, such as how to effectively handle high-resolution images and 

complex target scenes. 
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Traditional object detection methods, such as Faster R-CNN, generate candidate regions through a 

Region Proposal Network (RPN) [8], and then classify and regress these candidate regions using a 

convolutional neural network. This method performs well on single-scale targets, but often requires the 

introduction of a Feature Pyramid Network (FPN) to enhance detection ability when dealing with 

multi-scale targets. YOLO and SSD achieved real-time detection through a single-stage detection 

framework, but there is still room for improvement in detection accuracy. As the application of 

Transformer in visual tasks deepens, researchers have begun exploring the introduction of Transformer 

architecture into object detection to improve detection performance through the self-attention 

mechanism. 

In this paper, we propose a novel vision-based object detection model called CN-ViT based on 

Vision Transformer. CN-ViT combines the advantages of self-attention mechanism and convolutional 

neural networks to design an efficient feature extraction and object detection framework. First, the 

image is fed into a convolutional neural network for feature extraction. Then, the extracted features are 

mapped to a high-dimensional space through the ViT (Vision Transformer) structure, where further 

global feature capture is performed to enhance the detection ability for objects of different scales. 

The design of CN-ViT takes advantage of the global feature extraction ability of the Transformer and 

the local feature extraction ability of the convolutional neural network to form complementary feature 

representations. First, the input image is divided into fixed-size blocks, and initial features are extracted 

through convolutional layers. Then, these initial features are fused with global context information 

through the Global Context Block to further enhance the comprehensiveness of the feature expression. 

In addition, we apply the Coordinate Attention mechanism to capture channel information sensitive to 

location, thereby enhancing the feature localization ability. Next, these features are input into the 

multi-layer Transformer encoder, where global features are extracted through the self-attention 

mechanism. After being processed by the Transformer encoder, the features are input into the decoder, 

where target features are decoded through a specific number of learnable queries. Finally, the decoded 

features are classified into object categories and the object boundaries are refined through regression. 

The main contributions of this paper include proposing a target detection model CN-ViT based on 

the Vision Transformer. This model combines the advantages of self-attention mechanisms and 

convolutional neural networks.2. A GCCA module was designed to enhance the comprehensiveness and 

localization ability of feature representation by fusing global context information and location-sensitive 

channel features.3. The superior performance of CN-ViT on the Mini COCO standard dataset was 

verified through experiments, showcasing its advantages in detection accuracy and speed. 

2.  The Method 

2.1.  Problem Definition 

Object detection is a fundamental task in the field of computer vision, aiming to automatically identify 

and locate the categories and positions of objects in digital images or videos. When performing object 

detection, it is necessary not only to recognize various objects (such as people, vehicles, and animals) in 

the image but also to accurately delineate their locations using bounding boxes [6]. Compared to 

classification tasks, object detection involves more fine-grained features; therefore, detection models 

often require the ability to detect features at multiple scales and handle complex features in various 

scenes, posing numerous challenges for accurate object detection. 

This study aims to integrate the features of convolutional neural networks (CNNs) and Vision 

Transformers (ViTs) and propose a novel object detection model that combines the local feature 

extraction capability of CNNs with ViT's global feature capturing ability. This integration seeks to 

enhance the model's capacity for detecting multi-scale features and handling high-dimensional features, 

thereby improving its overall performance in object detection. 
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2.2.  Model Overall Structure 

The model structure of CN-ViT includes several key components: input image preprocessing, 

convolutional feature extraction, GCCA feature modeling and enhancement, Transformer encoder, and 

decoder. Figure 1 illustrates the overall architecture of CN-ViT. 

 

Figure 1. CN-ViT overall architecture. 

The input image is first processed through a uniform preprocessing, including image size adjustment, 

normalization, and data augmentation, before being fed into the CNN to extract features, as shown in 

Figure 2. The features extracted by the CNN are integrated with global information and re-encoded 

before being fed into the ViT model for further feature extraction and output of object detection results. 

ViT further analyzes these features by using its self-attention mechanism to pay attention to the 

relationships between different regions, which is particularly important for understanding the dynamic 

interactions between multiple objects in complex scenes. Therefore, the CNN serves as a bridge from 

raw pixels to high-level semantic features in the overall architecture, which is further strengthened by 

the GCCA module to output high-quality feature representations. The ViT then uses these features to 

perform fine-grained classification and localization, achieving efficient object detection. 

 

Figure 2. Image preprocessing. 

2.2.1.  Convolution module 

After preprocessing the input image, it is first fed into a CNN to extract features. Through multi-layer 

convolution operations, the convolution module can extract image features ranging from low-level 

features like edge texture to high-level image features of the object's part or overall structure layer by 

layer. Through the parameter sharing mechanism, the same convolution kernel is allowed to slide over 

the entire input image to enhance the generalization ability of the model. The CNN firstly processes the 
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input image and extracts rich Feature maps, which not only contain fine details of visual information, 

but also provide the necessary information basis for high-level tasks through hierarchical feature 

representation [10]. The processed feature maps are fed into the GCCA module for further processing to 

fuse global context information and location-sensitive channel features. 

2.2.2.  GCCA 

After the feature map is extracted by the CNN, this paper introduces the GCCA module, namely Global 

Context Block and Coordinate Attention, to further improve the feature representation ability and 

generalization performance of the model. The structure of GCCA is shown in Figure 3. 

 

Figure 3. Global Context Block and Coordinate Attention structure. 

1) Global Context Block (GCB), which is a mechanism to enhance the feature map representation 

with global information [11]. The GCB structure is shown in Figure 4.GCB extracts global context 

information from the CNN-processed feature maps through global pooling operations such as global 

average pooling or global max pooling. This global information can help the model understand the 

overall structure and background of the input image. Secondly, GCB fuses the global context 

information with the input feature map and weights each channel through the channel attention 

mechanism. This approach is able to emphasize channel features that are more important to the task, 

while suppressing less important channel features. By modeling the global context information and 

adjusting the channel relationship, GCB can significantly improve the representation ability of the 

feature map, which is helpful to the performance of the model in complex scenes. 

 

Figure 4. Global Context Block structure. 

The implementation flow of GCB is as follows: 

Assume that the input feature map is represented as (C, H, W), where C is the number of channels, H 

is the height, and W is the width. First, the context information is extracted by global average pooling. 

contextglobal = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑝𝑜𝑜𝑙(𝑋)                            (2.1) 

where context𝑔𝑙𝑜𝑏𝑎𝑙 ∈ 𝑅𝐶×1×1. 
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The global context vector is convolved, normalized, and processed to generate a weight map: 

𝑊 = 𝐶𝑜𝑛𝑣(𝑅𝑒 𝐿 𝑈(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑔𝑙𝑜𝑏𝑎𝑙))))            (2.2) 

𝑊mul = 𝜎𝑊                                       (2.3) 

𝑊att = 𝑊                                       (2.4) 

Here,𝑊𝑚𝑢𝑙 denotes the element-wise product weight matrix and𝑊𝑎𝑡𝑡 denotes the element-wise 

additive weight matrix. 

Finally, we perform feature map weighting and apply the weighting matrix to the input feature map: 

𝑋context = 𝑋⊗𝑊𝑚𝑢𝑙 ⊕𝑊𝑎𝑡𝑡                             (2.5) 

2) Coordinate Attention (CA), which is a lightweight attention mechanism that combines positional 

encoding and channel attention [12]. CA extracts horizontal and vertical spatial information through 

horizontal and vertical global pooling operations, respectively, which retains the location information of 

the feature map and helps the model to understand the spatial structure. 

In addition, CA is implemented by simple pooling and convolution operations, which has lower 

computational cost than the traditional self-attention mechanism, but it can still effectively enhance the 

feature representation ability. Specifically, the CA implementation flow is as follows: 

The input feature map is processed first by extracting spatial information through horizontal and 

vertical global average pooling: 

ℎ =
1

𝐻
∑ 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡(: , 𝑖, : )
𝐻
𝑖=1                                (2.6) 

𝑤 =
1

𝑊
∑ 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡(: , : , 𝑗)
𝑊
𝑗=1                               (2.7) 

Where ℎ ∈ 𝑅𝐶×1×𝑊and 𝑤 = 𝑅𝐶×𝐻×1. 

Second, H and W are passed through a convolutional layer to generate attention weights. 

ℎatt = 𝜎(𝐶𝑜𝑛𝑣(ℎ))                                   (2.8) 

𝑤att = 𝜎(𝐶𝑜𝑛𝑣(𝑤))                                  (2.9) 

Where 𝜎 is the activation function,ℎatt ∈ 𝑅𝐶×1×𝑊and 𝑤att = 𝑅𝐶×𝐻×1. 

Finally, we perform feature map weighting and apply the generated attention weights to the input 

feature map: 

𝑋GCCA = 𝑋𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ⊗ℎ𝑎𝑡𝑡 ⊗𝑤𝑎𝑡𝑡                          (2.10) 

The combination of GCB and CA can make full use of global context information and spatial 

location information. Firstly, the feature maps extracted by CNN are enhanced with global context 

information by the GCB module, and then the spatial attention is enhanced by the CA module. This 

combination can significantly improve the representation ability of the feature map and the 

generalization performance of the model, and provide richer and finer feature representations for the 

subsequent Vision Transformer (ViT). The processed feature maps are subsequently joined with 

positional encoding and resized to a suitable size for ViT processing before being fed into the ViT for 

further feature extraction and final object detection. 

2.2.3.  The Transformer architecture 

In the CN-ViT model, the Transformer encoder is the core component, which processes image patch 

embeddings using a multi-layer self-attention mechanism to capture global features. The encoder of 

each layer is composed of a multi-head self-attention mechanism and a feed-forward neural network. 

The self-attention mechanism divides the image block embedding into multiple heads for independent 

processing, enhancing the learning ability of the model for different features. The feedforward network 

performs nonlinear transformation through two fully connected layers and activation function to 

improve the expression ability. Additionally, each layer includes residual connections and layer 

normalization, helping to stabilize the training process and prevent gradient problems. 

2.2.4.  CN-ViT input tuning 

In the CN-ViT model, the resizing and processing of the input image are crucial steps. The feature image 

output by the CNN is three-dimensional, including the height, width, and number of channels of the 
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feature. Before feeding the feature map into ViT, we need to resize the feature map to the appropriate 

image size of ViT. 

The input to the Transformer encoder plays a key role in the whole model training and inference 

process. In the Vision Transformer (ViT) architecture, the introduction of positional information is 

crucial because unlike traditional convolutional neural networks, the Transformer architecture does not 

inherently have the ability to capture positional relationships in the input data. In the original 

architecture of ViT, position encoding is added to the input feature vector to provide positional context 

information, which is particularly important for image processing tasks. 

2.2.5.  CN-ViT overall forward process 

In the input image, the CNN first extracts features. Assuming the input image is 𝐼 ,a series of 

convolution operations are performed to define a function 𝑓𝐶𝑁𝑁. This function extracts the feature map 

of the image 𝐹,which is recorded as the following formula (2.11): 

𝐹 = 𝑓𝐶𝑁𝑁(𝐼)                                (2.11) 

During the convolution operation, each convolution layer can be considered as performing the 

following operations, as shown in Equation (2.12) : 

𝐹𝑙+1 = 𝜎(𝑊𝑙 ∗ 𝐹𝑙 + 𝑏𝑙)                                (2.12) 

Where 𝐹𝑙 is the feature map of the layer 𝑙, 𝑊𝑙 and 𝑏𝑙 are the convolution kernel and bias of the 

layer 𝑙, respectively. 𝜎 is the activation function ReLu used in this layer, and ∗ means to perform the 

convolution calculation. The output of this layer is then passed on to the next layer in the neural network. 

Then, the feature map 𝐹extracted by CNN is modeled by GCCA. The global context of the feature 

map is modeled by the GCB module, and channel weighting is performed to make the expression of the 

feature map in the global semantics more abundant. Subsequently, the attention distribution in the 

feature map is further refined by the AC module to generate a more discriminative feature map: 

𝐹GCB = 𝐺𝐶𝐵(𝐹)                                    (2.13) 

𝐹GCCA = 𝐴𝐶(𝐹𝐺𝐶𝐵)                                  (2.14) 

Next, we resize the feature map and add positional information to match the input dimensions of the 

Vision Transformer (ViT), denoted as, and add positional encoding (PE): 

𝐹′ = 𝑟𝑒𝑠𝑖𝑧𝑒(𝐹𝐺𝐶𝐶𝐴, 𝐻
′,𝑊′) + 𝑃𝐸                    (2.15) 

Where, 𝑟𝑒𝑠𝑖𝑧𝑒 is the adjusted size function and PE is the position encoding matrix, which is 

consistent with the adjusted feature map. Additionally, the adjusted size function plays a crucial role in 

ensuring that the position encoding matrix aligns perfectly with the feature map. 

Feeding this into the system, the output is denoted as Z: 

𝑍 = 𝑓𝑉𝑖𝑇(𝐹
′)                              (2.16) 

In the ViT model, there are multiple self-attention layers, and each layer operation is represented as 

follows: 

𝑍𝑙+1 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 − 𝐵𝑙𝑜𝑐𝑘(𝑍𝑙)                         (2.17) 

Where 𝑍𝑙 is the output of the layer, while  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 − 𝐵𝑙𝑜𝑐𝑘 mainly consists of the attention 

mechanism that helps the model focus on relevant parts of the input data. 

Finally, the detection head 𝑓𝑜𝑢𝑡 is used to predict the object class and bounding box. This is denoted 

as: 

(C,B) = 𝑓𝑜𝑢𝑡(𝑍)                              (2.18) 

That is, the final result is obtained. 

3.  Numerical experiments 

3.1.  The dataset 

In the experiments, the Mini COCO object detection dataset was chosen for this paper. It is considered 

one of the most challenging and widely used datasets in the field of object detection, containing 80 

categories of objects with approximately 123,000 training images and 50,000 validation images. The 
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objects in the COCO dataset are diverse and complex, including target objects at different scales, 

viewpoints, and backgrounds. The Mini COCO dataset is taken from the COCO 2017 dataset with 5489 

images in the training set and 234 images in the validation set. 

3.2.  Experimental Setup 

The model performance largely depends on the feature extraction ability of the embedding function. As 

shown in Table 1, ResNet-50 is used as the backbone network in this paper. In the middle layers of these 

backbone networks, max pooling, ReLU nonlinear activation function and batch normalization 

operation are used. It is worth noting that in the implementation of this paper, the batch normalization 

layer is replaced by a frozen batch normalization layer to ensure that the model is more stable during 

training. In addition, to prevent the network from overfitting, a dropout layer is added to ResNet-50. 

All experiments were performed using the deep learning framework PyTorch 1.13.1, and the 

hardware configuration was AMD EPYC 7543 32-core processor and Nvidia A40 (48GB) ×1 graphics 

card. During the experiment, the learning rate of the model was set to 1e-4 and the learning rate of the 

backbone network was set to 1e-5.The number of samples per batch (batch size) is 4, the weight decay 

factor is 1e-4, and the total number of training rounds (epochs) is 200. When training reaches the 150th 

round, the learning rate will decrease. To prevent gradient explosion, we set the maximum norm of 

gradient clipping (clip_max_norm) to 0.1. In the testing phase, 234 images are selected for evaluation in 

this paper, and the evaluation index of the model is the accuracy under 95% confidence. 

3.3.  Analysis of experimental results 

In order to verify the performance of the CN-ViT model proposed in this paper, we conduct comparative 

experiments on the Mini COCO dataset, including metric-based FPN and end-to-end detection network 

DETR. The average accuracy comparison of the model in medium size object detection under the Mini 

COCO dataset is shown in Figure 5. The average precision and average recall of the model under the 

Mini COCO dataset are shown in Tables 1 and 2. By analyzing the experimental results, this paper 

draws the following conclusions: 

1) CN-ViT shows excellent performance for medium and large object detection using the same 

skeleton network on the Mini COCO dataset, as shown in Table 1. Specifically, for medium-size object 

detection, CN-ViT has an average precision improvement of 6.10 percentage points over FPN, and 

DETR has an average precision improvement of 4.60 percentage points over FPN. In terms of large-size 

object detection, CN-ViT has the average precision improved by 20.22 percentage points compared with 

FPN, and DETR has the average precision improved by 14.62 percentage points compared with FPN. 

As a result, CN-ViT performs much better in the detection of objects above medium size. 

According to the experimental results in Tables 1 and 2, CN-ViT achieves the highest detection 

accuracy on the Mini COCO dataset compared to the control methods. CN-ViT shows a significant 

improvement over FPN in terms of average precision on this dataset. When IoU=0.50:0.95 and 

maxDets=100, the AP of CN-ViT is 12.7, significantly higher than DETR's 8.60 and FPN's 4.60, as 

shown in Table 1. In the same range, the AR of CN-ViT is 23.9, surpassing FPN's 7.50 and DETR's 17.1, 

as shown in Table 2.FPN method learns multi-scale context information of sample features by 

constructing feature pyramid structure. It combines bottom-up and top-down methods to obtain strong 

semantic features and improve the performance of object detection and instance segmentation in 

multiple datasets. It may lead to the reduction of the global capture ability of the model. By modeling 

object detection as an end-to-end sequence-to-sequence prediction problem and utilizing the global 

modeling ability of the Transformer structure, DETR realizes the direct prediction of the target, breaking 

away from the traditional anchor-based methods. DETR does not require predefined bounding boxes 

and classifiers, but directly predicts the category and bounding box coordinates of the target. At the 

same time, it enhances the global modeling ability of the target location and category by introducing a 

dynamic target-query matching mechanism. However, DETR also has some shortcomings, such as slow 

training convergence, weak detection performance, high memory usage, and limited generalization 

ability. 
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CN-ViT combines the features of CNN and Transformer, improves the multi-scale representation 

ability of the model in high-dimensional features, effectively captures long-range dependence 

information, and enhances the learning ability of the model on long sequences. At the same time, the 

introduction of GCCA provides the model with a deep fusion of global context information, thereby 

enhancing the diversity and robustness of the model in different application scenarios. Through the 

attention mechanism, CN-ViT can better capture the context information between features and 

strengthen the category features related to object detection, thus significantly improving the accuracy 

and stability of medium and large scale object detection. 

 

Figure 5. Comparison of average accuracy of medium and large size object detection 

Table 1. Average accuracy comparison under Mini COCO dataset. 

Method Network AP@[IoU=0.50:0.95] APs APm APl 

FPN ResNet-50 4.61 2.26 4.31 9.18 

DETR ResNet-50 8.60 1.90 8.90 23.8 

CN-ViT ResNet-50 12.7 5.00 15.0 29.4 

Table 2. Comparison of average recall under Mini COCO dataset. 

Method Network AR@[IoU=0.50:0.95] ARs ARm ARl 

FPN ResNet-50 7.50 3.30 7.20 14.4 

DETR ResNet-50 17.1 2.90 18.5 41.1 

CN-ViT ResNet-50 23.9 8.90 27.5 43.3 

4.  Conclusions 

In this paper, we introduce CN-ViT, a novel visual object detection model based on Vision Transformer. 

The model effectively combines the strengths of the self-attention mechanism and CNN. Additionally, it 

incorporates Global Context Block and Coordinate Attention to address the challenges posed by 

multi-scale objects, intricate backgrounds, and object occlusion. Through this design, the experimental 

results show that CN-ViT performs significantly better than the current mainstream object detection 

methods on the Mini COCO standard dataset, especially in the detection accuracy and processing speed 

of medium and large scale objects. This paper provides a research idea of multi-scale feature fusion for 

the study of target detection, but there is still some room for improvement. In future work, the 

representation of multi-scale features and the improvement of attention mechanism can be studied to 

further improve the performance and adaptability of the model. 
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