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Abstract. Nowadays, with the rapid development of science and technology, the 

innovation and application of robot technology has become an important force to 

promote industrial development, which requires robots to have a high degree of 

autonomy and adaptability. Among them, terrain classification technology is one of the 

key technologies to achieve this goal. In order to improve the ground adaptability of 

robots in complex environments, this paper proposes a terrain classification algorithm 

based on improved Hilbert-Huang transform(HHT) combined with ensemble empirical 

mode decomposition(EEMD) and long short-term memory network(LSTM). Firstly, the 

signal data is processed by EEMD, and then the frequency domain features of the signal 

are extracted by Hilbert transform to expand the feature dimension. Finally, the features 

are learned and classified by the LSTM model, which effectively improves the 

classification accuracy. In this paper, we conducted sufficient experiments to compare 

the effects of EMD and EEMD and the effects of different neural network models, and 

verified the contribution of the Hilbert-Huang transform to improve the classification 

performance through ablation experiments, which proves the effectiveness and 

reliability of our proposed algorithm, and provided powerful technical support for the 

robot to adapt to the ground information in the complex environment. 

Keywords: machine learning, terrain classification, Hilbert-Huang transform, long 

short-term memory networks. 

1.  Introduction 

As industrial and information technologies rapidly evolve, robots are widely used in high-risk, high-

complexity industrial fields [1]. In order to improve work efficiency and reduce work risks, robots are 

increasingly deployed in extreme environments such as field surveys, planetary exploration, etc [2]. 

These complex and changeable environments place higher demands for the robot 's ground adaptability 

level, and thus we urgently need an effective method to classify the ground where the robot is located, 

so that the robot can accomplish tasks in different environments. 

Common ground-based classification methods in the field can be categorized into traditional machine 

learning algorithms and deep learning algorithms based on neural networks. Tsai et al. [3] combined 

aerial radar data and photographic images to extract geometric features and spectral features, followed 
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by a classification study of ground cover types using decision trees and support vector machines. Khairul 

Azmi Mahadhir et al. [4] used support vector machine (SVM) algorithm to identify different terrains by 

analyzing vibration signals, and then implement terrain classification for agricultural robots. Wenzhao 

Liao [5] used genetic algorithm to optimize the random forest model, and the optimized model has 

achieved a classification accuracy of 92.6%, which effectively improves the accuracy of ground 

classification. M. G. Harinarayanan Nampoothiri et al. [6] used machine learning techniques to develop 

a 100% accurate Ensemble-Subspace KNN based classification model, which can identify 11 terrain 

types for autonomous robots in real time. Although the machine learning algorithms can achieve good 

results, these algorithms usually need to manually design features, which is a tedious and difficult 

process, and it performs poorly when analyzing high-dimensional and complex ground data. 

In recent years, with the improvement of arithmetic power and the development of artificial 

intelligence, scholars have begun to use neural-network-based deep learning approaches: Xinyun Zou 

et al. [7] proposed a reserve network (r-SNN) method based on spiking neuron networks for terrain 

classification using sensor data and camera images, and achieved an accuracy of more than 95 %. 

Amirreza Shaban et al. [8] employed a deep neural network called BEVNet for terrain classification, 

which can directly predict terrain classes of local maps from sparse LiDAR input data. Junghee Lee et 

al. [9] used convolutional neural network (CNN) as the main classification algorithm to convert one-

dimensional spectral vectors into two-dimensional feature representations for ground cover 

classification studies. Ahmadreza Ahmadi et al. [10] used gated recurrent neural networks for semi-

supervised robotic ground classification. Although deep learning algorithms can automatically learn the 

ground features, the deep learning algorithm applied by most scholars only processes in the time domain 

space and does not consider frequency domain features, which makes the network unable to capture the 

deep information behind the signal, making it difficult to make further breakthroughs in classification. 

To tackle the above problems, this paper proposes a ground classification algorithm based on 

improved HHT algorithm based on EEMD and LSTM. The HHT algorithm is utilized to capture the 

frequency domain information in the signal that is difficult to be directly mined by the model. After that, 

the powerful feature extraction capability of the LSTM model is utilized for further learning and 

classification. This method can fully exploit the frequency domain features of the signal and take 

advantage of LSTM to achieve more accurate ground classification results. 

2.  Method 

2.1.  Hilbert-Huang transform 

2.1.1.  Empirical Modal Decomposition. 

Hilbert-Huang Transform (HHT) can process nonlinear and non-stationary signals [11], which obtains 

the frequency domain information such as the instantaneous frequency of the signal and is very suitable 

for our signal data set. Specifically, the HHT contains two steps of empirical modal decomposition and 

Hilbert spectral analysis, where: 

Empirical modal decomposition (EMD) is an adaptive method for analyzing time series data. It 

decomposes a complex time series into a series of intrinsic modal functions (IMFs), and then performs 

Hilbert transform on each IMF to extract features. However, the traditional EMD decomposition will 

produce problems such as modal aliasing and endpoint effects. Therefore, we use ensemble empirical 

modal decomposition (EEMD) to replace the traditional EMD to analyze the signals. EEMD adds noise 

several times and performs average processing on the basis of the EMD, so it can effectively avoid the 

modal aliasing problem of the EMD. Figure 1 shows the IMFs obtained by EMD decomposition of the 

input signal, and figure 2 shows the IMFs obtained by EEMD decomposition. It can be seen that the 

decomposition result of EEMD is more stable. 
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Figure 1. EMD decomposition results.  Figure 2. EEMD decomposition results. 

The procedure for EEMD decomposition is delineated as follows: 

(1) Add N sets of white noise 𝑛𝑖(𝑡) with standard normal distribution to the original input signal 

𝑥(𝑡) to obtain a new signal 𝑥𝑖(𝑡): 
 𝑥𝑖(𝑡) = 𝑥(𝑡) + 𝑛𝑖(𝑡) (1) 

(2) For the new signal 𝑥𝑖(𝑡), EMD decomposition is performed to obtain J IMF components 𝑐𝑖,𝑗(𝑡) 

and residual function 𝑟𝑖(𝑡): 

 𝑥𝑖(𝑡) = ∑ 𝑐𝑖,𝑗
𝐽
𝑗=1 (𝑡) + 𝑟𝑖(𝑡) (2) 

where 𝑐𝑖,𝑗(𝑡) is the j-th intrinsic mode function obtained by EMD decomposition of the new signal 𝑥𝑖(𝑡), 

and  𝑟𝑖(𝑡) is the residual function of the new signal  𝑥𝑖(𝑡) obtained by the EMD decomposition . 

(3) Perform an ensemble average operation on the aforesaid IMF components to achieve the final 

IMF of EEMD decomposition of the original input signal 𝑥(𝑡):  

 𝑐𝑗(𝑡) =
1

𝑁
∑ 𝑐𝑖,𝑗
𝑁
𝑖=1 (𝑡) (3) 

where 𝑐𝑗(𝑡) is the j-th intrinsic mode function acquired through EEMD decomposition of the original 

input signal 𝑥(𝑡). 
Ultimately, the original input signal 𝑥(𝑡) is represented by the following formula: 

 𝑥(𝑡) = ∑ 𝑐𝑗
𝐽
𝑗=1 (𝑡) + 𝑟(𝑡) (4) 

2.1.2.  Hilbert spectral analysis.  

The original input signal 𝑥(𝑡) is decomposed by EEMD to extract J intrinsic mode functions. Then, 

Hilbert transform is used for time-frequency analysis of each IMF component 𝑐𝑗(𝑡) , and the 

instantaneous frequency and instantaneous amplitude of the IMF are calculated to obtain the frequency 

domain characteristics of the signal. 

The Hilbert transform of 𝑐𝑗(𝑡) is defined as: 

 𝐻[𝑐𝑗(𝑡)] = �̂�𝑗(𝑡) =
1

𝜋
∫

𝑐𝑗(𝑡)

𝑡−𝜏

∞

−∞
𝑑𝜏 (5) 

After the Hilbert transform, the analytic signal corresponding to 𝑐𝑗(𝑡) is defined as: 

 𝑧𝑗(𝑡) = 𝑐𝑗(𝑡) + 𝑖𝑐𝑗(𝑡) = 𝑎𝑗(𝑡)𝑒𝑥𝑝[𝑖𝜃𝑗(𝑡)] (6) 

 𝑎𝑗(𝑡) = [𝑐𝑗
2(𝑡) + �̂�𝑗

2(𝑡)]1/2 (7) 

 𝜃𝑗(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑐̂𝑗(𝑡)

𝑐𝑗(𝑡)
 (8) 

𝑎𝑗(𝑡) is the envelope of the signal 𝑧𝑗(𝑡), and 𝜃𝑗(𝑡) is the phase of the signal 𝑧𝑗(𝑡). 

The instantaneous frequency of 𝑐𝑗(𝑡) is: 
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 𝜔𝑗(𝑡) =
𝑑𝜃𝑗(𝑡)

𝑑𝑡
 (9) 

Thus, the frequency domain characteristics of the input signal are obtained 

Empirical modal decomposition (EMD) is an adaptive time series analysis method. It decomposes a 

complex time series into a series of intrinsic modal functions (IMFs), and then performs Hilbert 

transform on each 

2.2.  Long short-term memory networks 

LSTM is a recurrent neural network with special structure and function, which controls the flow of 

information through input gates, forgetting gates, and output gates, so that LSTM can selectively retain 

or forget information, overcoming the gradient disappearance and gradient explosion problems faced by 

traditional RNNs, and being able to handle long sequence data more effectively12. The input data set is 

3810*128 long sequence data, which is suitable for LSTM model to process and complete the 

classification problem. Figure 3 illustrates the structure of the LSTM network. 

 

Figure 3. LSTM network structure.  

(1) Input gate controls which information from the current input should be stored in the cell state:  

 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−𝑙 , 𝑥𝑡] + 𝑏𝑖) (10) 

 �̃�𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡−𝑙 , 𝑥𝑡] + 𝑏𝑐) (11) 

(2) Forget gate decides what information should be discarded from the cell state: 

 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−𝑙 , 𝑥𝑡] + 𝑏𝑓) (12) 

(3) Output gate controls what information about the cell state will be included in the next hidden 

state: 

 𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−𝑙 , 𝑥𝑡] + 𝑏𝑜) (13) 

 ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡) (14) 

(4) Cell state: 

 𝑐𝑡 = 𝑓𝑡 ⊙𝑐𝑡−𝑙 + 𝑖𝑡 ⊙ �̃�𝑡 (15) 

In the above equation, 𝑊𝑖､𝑊𝑐､𝑊𝑓､𝑊𝑜  are the weight matrix, and 𝑏𝑖､𝑏𝑐､𝑏𝑓､𝑏𝑜  are the bias 

parameters, and 𝜎 is the sigmoid function, and ⊙ is the dot product. 

3.  Experiment 

3.1.  Experimental hardware and software environment 

In this experiment, NVIDIA GeForce RTX 3060 is used as the GPU, Python version is 3.11.7. The 

neural network and model were constructed using the PyTorch 1.13.1 framework, which is developed 

in the PyCharm environment. 
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3.2.  Dataset description 

The data used in this experiment were obtained from13, the collector deployed 10 sensors in different 

ground environments for signal collection. Each set of signals collected by each sensor contains 128 

sampling points, so each set of signals is a matrix with the shape of (128,10). Finally, 3810 sets of signal 

data were collected, and each set of data represents the characteristics of a specific ground type, which 

corresponds to 9 different ground types. 

Figure 4 shows an example set of data collected by 10 sensors, and figure 5 shows the distribution 

of the nine different ground categories across all signals. 

 

 

  

(a)  (b) (c) 

 

 

  

(d)  (e) (f) 

 

 

  

(g)  (h) (i) 

 
 

 

 

 
 (j)  

Figure 4. Waveforms of a set of signals acquired by 10 sensors. 
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Figure 5. Distribution of ground categories. 

3.3.  Experimental Measurement Indicators 

When using the neural network model for classification, we construct a 9*9 confusion matrix to assess 

the performance of the model. Each element in the confusion matrix 𝐶𝑖𝑗 represents the count of samples 

from class i that are categorized by the model as class j. The diagonal elements represent the count of 

samples accurately classified by the model, whereas the non-diagonal elements represent the number of 

samples misclassified. Based on the matrix, we can calculate the assessment indicators such as accuracy, 

precision, recall and F1 score in classification problems: 

Accuracy measures the model's overall prediction efficacy by comparing the number of correct 

predictions to the total samples, as outlined in the following calculation: 

 Accuracy =
∑ 𝐶𝑖𝑖
𝑛
𝑖=1

∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 (16) 

Precision measures the ratio of all samples predicted to be positive by the model that are actually 

positive, reflecting the reliability of the model's predictive outcomes, as outlined below: 

 Precision𝑖 =
𝐶𝑖𝑖

∑ 𝐶𝑖𝑗
𝑛
𝑗=1

 (17) 

Recall measures the fraction of actual positive samples that are accurately classified as such by the 

model, reflecting the model's capacity to detect positive samples, and is computed as follows: 

 Recall𝑖 =
𝐶𝑖𝑖

∑ 𝐶𝑗𝑖
𝑛
𝑗=1

 (18) 

The F1 Score (F1 Score) is the reconciled average of the precision and recall, which is employed to 

evaluate the balance of accuracy and completeness of the model. The computation formula is delineated 

below: 

 F1𝑖=2 ×
Precision𝑖×Recall𝑖

Precision𝑖+Recall𝑖
 (19) 

3.4.  Comparative experiments 

3.4.1.  Comparison of classification models.  

In order to select the final neural network model for classification, we compared the classification effects 

of LSTM and 1DCNN models. To ensure a fair comparison, we used the original data as the base dataset, 
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trained and tested with the two models separately, and used the five-fold cross-validation method for 

metrics measurement. The cross-validation outcomes are delineated in table 1. 

Table 1. Metrics for evaluating the LSTM model and 1DCNN model with five-fold cross-validation. 

Model accuracy precision recall f1-score 

LSTM 0.7932 0.7529 0.7348 0.7398 

1DCNN 0.3840c 0.3642 0.3131 0.3134 

Table 1 illustrates that the precision of the LSTM model outperforms the 1DCNN model in 

classification tasks, so we selected LSTM as our classification model in the subsequent experiments. 

3.4.2.  Comparison of Empirical Modal Decomposition Methods 

In the previous section, we mentioned that the decomposition of HHT transform has two different ways, 

EMD and EEMD, and the latter is an improvement of the former. In order to verify the different effects 

of the two approaches, we keep the rest of the conditions unchanged, and compare classification effect 

after decomposing dataset with EMD and EEMD respectively. The five-fold cross-validation is still 

adopted, and table 2 shows the classification results. 

Table 2. Classification results corresponding to EMD and EEMD decomposition. 

Model accuracy precision recall f1-score 

LSTM 0.7932 0.7529 0.7348 0.7398 

1DCNN 0.3840c 0.3642 0.3131 0.3134 

Table 2 shows that the average accuracy of EEMD is higher than that of EMD, which proves the 

effectiveness of EEMD as an improvement. 

3.5.  Ablation experiments 

To evaluate the improvement effect of the HHT transform on the classification performance, we 

conducted classification experiments on the dataset containing only the original signals and the 

expanded dataset with the transformed signals respectively, while keeping all other conditions constant. 

The cross-validated results are shown in figure 6. The figure illustrates that our proposed HHT method 

can improve the classification accuracy, proving the effectiveness of our method. 

 

Figure 6. Average accuracy of five-fold cross-validation between original and expanded dataset. 

4.  Conclusion 

Employing the dataset on the Kaggle website as the experimental dataset, this paper proposes a robot 

ground classification algorithm that combines EEMD and LSTM, which effectively realizes efficient 
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classification of complex ground environments. The original dataset was collected by 10 sensors, 

containing a total of 3810 sets of signals and 9 ground types, and each set of signals is a matrix of size 

(128, 10). We conducted two sets of comparison experiments between EMD/EEMD and LSTM/1DCNN: 

the classification accuracy obtained using the original dataset combined with the LSTM model is 

77.77%, while the classification accuracy using the improved HHT combined with EEMD algorithm 

and the LSTM model is improved to 79.32%, which proves the effectiveness of the EEMD improvement; 

the classification accuracy of the improved HHT combined with EEMD algorithm and 1DCNN model 

is only 38.40%, proving that LSTM is more suitable than 1DCNN for the task in this dataset. 

Additionally we performed ablation experiments to demonstrate the improvement and enhancement of 

the HHT transform for the results. Future work can further optimize the robot ground classification 

problem from the perspective of combining multiple deep learning methods and optimizing data 

processing for a wider range of application scenarios and higher robustness. 
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