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Abstract. In today's rapidly evolving online environment, advertising recommendation systems 

utilize multi-armed bandit algorithms like dynamic collaborative filtering Thompson sampling 

(DCTS), upper confidence bound based on recommender system (UCB-RS), and dynamic ε-

greedy algorithm (DEG) to optimize ad displays and enhance click-through rates (CTR). These 

algorithms must adapt to limited information and update strategies based on immediate 

feedback.This study employs an experimental comparison to assess the performance of the 

DCTS, UCB-RS, and DEG algorithms using the click-through rate prediction database from 

Kaggle. Five experimental sets under varied parameter settings were analyzed, employing the 

Receiver Operating Characteristic (ROC) curve, accuracy, and area under the curve (AUC) 

metrics.Results show that the DEG algorithm consistently outperforms the others, achieving 

higher AUC values and demonstrating robust sample identification capabilities. DEG also 

exhibits superior precision at high recall levels, showcasing its potential in dynamic advertising 
environments. Its dynamic adjustment strategy effectively balances exploration and exploitation, 

optimizing ad displays.The findings suggest that DEG's adaptability and stability make it 

particularly suitable for dynamic ad recommendation scenarios. Future research should focus on 

optimizing DEG's parameter settings and possibly integrating UCB-RS's exploration 

mechanisms to enhance performance and develop more effective strategies for advertising 

recommendation systems. 
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1.  Introduction 

In today's digital economy, advertising recommendation systems play a crucial role in driving user 

engagement and revenue, heavily relying on multi-armed bandit algorithms to optimize ad displays and 
enhance click-through rates (CTR). These algorithms make decisions under limited information and 
adjust strategies with real-time feedback, thereby improving ad accuracy and return on investment (ROI) 
by balancing the exploration of new advertising opportunities and the exploitation of known effective 
ads. Thus, selecting the appropriate algorithm is crucial for effective ad recommendation systems. 

The most commonly used algorithms are UCB, TS, and epsilon greedy. Many scholars have 
improved and perfected the application of these three algorithms. Various authors have applied and 
improved UCB algorithms through a variety of innovative approaches: Qiu et al. integrated contrastive 

self-supervised learning with reinforcement learning to propose UCB-type algorithms for MDPs and 
MGs with low-rank transitions, achieving sample efficiency[1]; He et al. introduced UCBVI-γ, a model-
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based algorithm for discounted MDPs using optimism and a Bernstein-type bonus, which achieves near-
minimax optimal performance[2]; Dong et al. examined the convergence of the MC-UCB algorithm in 
random-length episodic MDPs, demonstrating almost sure convergence for a large class of MDPs[3]; 
Lu et al. and Tiapkin et al. introduced Causal MDPs and the C-UCBVI algorithm, leveraging causal 

structures to improve reinforcement learning performance and achieve efficient regret bounds[4, 5]; 
Domingues et al. developed Kernel-UCBVI, an optimistic algorithm for finite-horizon RL problems 
with a metric state-action space, using kernel estimators to balance exploration and exploitation and 
achieve novel regret bounds[6]; and Foster and Rakhlin proposed a universal and optimal reduction from 
contextual bandits to online regression, utilizing regression oracles and UCB-based exploration 
strategies to achieve minimax optimal rates for general function classes[7]. 

Many scholars have explored and advanced the applications of Thompson Sampling (TS) algorithms 
in different domains. Zhang et al. introduced Neural Thompson Sampling, utilizing deep neural 

networks to balance exploration and exploitation in contextual multi-armed bandit problems, achieving 
a cumulative regret of O(T1/2) and demonstrating strong experimental performance[8]. Aouali et al. 
developed Mixed-Effect Thompson Sampling (meTS) for contextual bandits, using a mixed-effect 
model to capture action correlations and providing bounds on Bayes regret with strong empirical results 
in both synthetic and real-world scenarios[9]. Peng and Zhang demonstrated that top-two Thompson 
Sampling excels in ranking and selection problems, offering comprehensive theoretical and numerical 
comparisons with other sampling procedures[10]. Uguina et al. introduced a learnheuristic algorithm 

that combines Thompson Sampling with metaheuristics to solve the dynamic team orienteering problem, 
adapting to real-time changes such as traffic and weather, and outperforming static approaches by up to 
25% in dynamic settings[11]. Tanık and Ertekin proposed a hierarchical framework that integrates 
reinforcement learning and a TS-inspired soft-attention model to improve learning and planning through 
skill reuse and adaptability, efficiently solving compositional control problems[12]. Finally, Bi et al. 
enhanced personalized dynamic pricing with an improved Thompson Sampling algorithm, leveraging 
the Pólya-Gamma distribution to handle high-dimensional feature vectors, resulting in faster 

convergence and lower regret compared to traditional methods in both simulated and real data[13]. 
The epsilon-greedy algorithm has been advanced by various researchers through diverse applications 

and enhancements. You et al. introduced the EMMA algorithm, which leverages epsilon-greedy for 
optimizing MQTT QoS mode selection and power control in power distribution IoT (PD-IoT), balancing 
packet-loss ratio and energy consumption via online learning in a multi-armed bandit framework[14]. 
Yang et al. developed an adaptive epsilon-greedy strategy for a multi-objective hyper-heuristic 
algorithm (HH_EG) that effectively selects and combines low-level heuristics (LLHs) during evolution, 
enhancing cross-domain problem-solving without redesigning high-level strategies[15]. Liu et al. 

enhanced particle swarm optimization (PSO) with an epsilon-greedy strategy and a Pareto archive 
algorithm for multi-objective reactive power optimization, improving global and local search 
capabilities to explore optimal solutions early and avoid local optima[16]. Dabney et al. proposed a 
temporally extended epsilon-greedy algorithm that improves exploration by repeating actions for 
random durations, inspired by ecological models, showing strong performance under certain duration 
distributions[17]. Gimelfarb et al. introduced a Bayesian ensemble approach (ε-BMC) to epsilon-greedy 
exploration in model-free reinforcement learning, with a closed-form Bayesian model update to adapt ε 

efficiently, balancing exploration and exploitation with monotone convergence guarantees[18]. Finally, 
Rawson and Balan developed the Deep Epsilon Greedy method, using neural network predictions to 
achieve error or regret bounds and convergence guarantees, demonstrating that cubic root exploration 
minimizes the regret upper bound in nonlinear reinforcement learning problems, as evidenced by 
experiments on the MNIST dataset[19]. 

Despite the advancements in multi-armed bandit algorithms, there remains a significant gap in their 
application to advertising recommendation systems operating in dynamic, non-static environments. 

Traditional algorithms are often evaluated under static conditions, which do not adequately reflect the 
rapid changes in user preferences and behaviors encountered in real-world advertising scenarios. 
Through a detailed comparative analysis of DCTS, UCB-RS, and DEG, this study aims to provide 
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valuable insights into their performance under real-time dynamic conditions, ultimately guiding 
practitioners in selecting the most effective algorithms for advertising recommendation systems. 

The effects of each algorithm are verified in combination with experimental data sets, especially in 
terms of accuracy and efficiency of advertising recommendation, providing an empirical basis for 

algorithm selection and parameter adjustment of advertising systems. The comparison and optimization 
of these algorithms not only improves the relevance and user satisfaction of advertising 
recommendations, but also provides a more flexible and adaptable solution for the field of advertising 
recommendation. 

2.  Methodology 

2.1.  Thompson sapling 
The application of Thompson sapling(TS) in ad recommendation mainly relies on its ability to balance 
exploration and utilization to maximize long-term benefits. 

TS models the performance of each ad, usually using Beta distribution to represent the uncertainty 
of the success rate (click-through rate) of each ad. Each ad is assigned two parameters, the number of 

successes (α) and the number of failures (β). Each time an ad is displayed, the TS algorithm extracts a 
probability value for each ad, which comes from the Beta distribution of the ad success rate. Then the 
ad with the highest probability value is selected to be displayed to the user. This method naturally 
balances the utilization of known efficient ads and the exploration of uncertain ads. Whenever an ad is 
clicked or ignored, the Beta distribution parameters (α or β) of the corresponding ad are updated to 
reflect the latest user feedback. This instant update allows the model to quickly adapt to changes in user 
behavior. By continuously optimizing these parameters, TS can improve the adaptability of the ad 

recommendation system to user preferences, thereby increasing the user's click-through rate and 
conversion rate, and ultimately achieve the goal of maximizing advertising revenue[20]. 

This paper uses a model called DCTS for comparison, which is designed for cross-domain ad 
recommendations. This model leverages the inherent similarity between users and ads and enhances the 
traditional Thompson sampling method by combining temporal dynamics and cross-domain knowledge 
transfer. By more accurately predicting user preferences over time and in different ad environments, 
DCTS significantly improves CTR[21]. 

When updating the Beta distribution parameters, DCTS considers the information from the global 

reward and the feedback from individual users. The parameter update formula is as follows: 
Posterior distribution parameters: 

 αk(t) = λ(s)α0,k(t) + gsk(t)                                         (1) 

 βk(t) = λ(f)β0,k(t) + gfk(t) + 1      (2) 

Where,λ(s) and λ(f) are hyperparameters that adjusts the importance of prior knowledge.They scale 

the impact of initial or baseline parameters (α0,k(t)) and (β
0,k

(t)) on the current calculation of the Beta 

distribution's parameters.g is a hyperparameter that adjusts the importance of global reward, and sk(t) 

and fk(t) are the number of successes and failures at time step t, respectively[21]. 

2.2.  Upper Confidence Bound 

The Upper Confidence Bound (UCB) algorithm is a powerful reinforcement learning technique used in 
market recommendation systems, particularly for optimizing ad placements. In dynamic environments 
where customer preferences evolve over time, UCB effectively balances exploration (trying new ads) 
and exploitation (favoring the best-performing ads). It does so by estimating the potential reward of each 
ad and adjusting the selection strategy accordingly. This approach ensures that the system not only 
leverages historical data but also adapts to changes, maximizing long-term CTR while reducing the risk 
of missing out on better-performing ads[22]. 
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This paper adopts the improved algorithm UCB-RS (Recommendation system-based Upper 
Confidence Bound) of the UCB algorithm[23]. This algorithm performs well in dealing with multi-
armed bandit problems with non-stationary and large-scale state spaces by combining the advantages of 
upper confidence bounds and recommendation systems. 

The advertising recommendation system needs to choose from a large number of possible 
advertisements, which makes the pure exploration phase very time-consuming. The UCB-RS algorithm 
greatly reduces the time of pure exploration through the collaborative filtering technology of the 
recommendation system. Specifically, user-user collaborative filtering is used to estimate the potential 
rewards of unselected advertisements, so as to directly enter the utilization phase and improve the 
efficiency of the algorithm. 

Main Formulas and Parameters 
1) Estimated Mean Reward: 

 μit = λμit + (1 − λ)μit̂                                                          (3) 

Where λ is the coefficient that balances the real-time reward (μit) and the reward estimated by the 
recommendation system (μit̂), ranging between 0 and 1. 

2) Upper Confidence Bound): 

 Ukt = μit + ξit                                                                 (4) 

Where ξit is the confidence interval, defined as: 
if Ni = 0: 

 ξit = √αlogT                                                                    

(5) 

otherwise: 

 ξit = √αlog
T

Ni
                                                                  (6) 

Ni is the number of times ad i has been played up to time t, α is the confidence level parameter, T is 
a predefined time interval much longer than most ad sessions. 

3) Recommendation System Framework: 
Uses Collaborative Filtering (CF) to compute the potential rewards for each product based on the 

historical data of similar users in the reference set. 
Parameter Configuration 
- λ: Coefficient balancing real-time and estimated rewards, ranges from 0 to 1. 
- α: Confidence level parameter, affects the size of the confidence interval. 
- T: Predefined long time interval, used for calculating the confidence interval of unexplored ads. 

- Ni: Number of times ad i has been played up to time t[23]. 

2.3.  Epsilon Greedy 

The ε-greedy algorithm is an algorithm used to solve the multi-armed bandit problem. The algorithm 
dynamically adjusts to obtain the maximum benefit in the long term by exploring and exploiting with a 

certain probability. The specific approach is: explore with probability ε, select random selection options 

to discover potential high-yield options; exploit with probability 1-ε, select the option with the highest 
estimated benefit at present. This algorithm can explore different options while giving priority to the 
current best benefit option to obtain the maximum benefit. 

The ε-greedy algorithm is applied to the advertising recommendation system. The algorithm can 
attract customers by showing them different content, thereby obtaining higher CTR and conversion rates. 

By adjusting ε in the algorithm, the advertising recommendation system can find a balance between 
exploring new ads and utilizing the existing best-performing ads, thereby maximizing benefits. 
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The core of using the ε-greedy algorithm is to adjust the ε value. Too high or too low ε will lead to 

poor performance of the algorithm. The actual performance is: at a higher ε value, the system may 
explore too frequently, resulting in the selection of many suboptimal discount strategies, which 

ultimately reduces the overall benefit. At a lower ε value, the system may rely too much on existing 
efficient strategies and fail to discover potential higher-yield options, which will also lead to suboptimal 

performance. This paper adopts the ε-greedy algorithm that dynamically adjusts the ε value to optimize 
the decision-making of data based on the user's behavioral preferences. Specifically, this algorithm sets 

a higher ε value at the beginning and conducts extensive exploration; and gradually reduces the ε value 
over time to increase the utilization of the current optimal option[24]. 

This paper selected the dynamic adjustment of the Epsilon Greedy algorithm for application. Because 
it is crucial for effectively balancing exploration with exploitation, especially in environments where 
options or states are numerous and varied[24]. Below is the comprehensive formula and the step-by-
step application process: 

Formula 

Epsilon (ε) Adjustment Formula: 

 ε(t) = max (εmin, ε0 ∗ e−r∗t)                                                  (7) 

Where ε0 is the initial value of epsilon, r is the decay rate, t is the iteration or time step, and εmin is 
the minimum value of epsilon to ensure some degree of exploration continues throughout the learning 

process. 
Application Process 

1)Initialize Parameters: Set ε0, r, εmin, and initialize the decision environment and reward structure. 
2)For each iteration t: 

   - Calculate ε(t) using the formula based on the current iteration number. 
   - Decision Selection: 

       - With probability ε(t), select a random action (explore). 
       - With probability 1 - ε(t), select the best-known action (exploit). 
   - Execute the action and receive a reward. 
   - Update reward estimation for the chosen action based on the received reward. 

   - Periodically evaluate or monitor algorithm performance to determine if adjustments to decay rate 
or other parameters are needed. 

3)Termination Condition: 
   - Reach a predetermined number of iterations. 
   - Performance reaches a satisfactory level or no significant improvement is observed. 

3.  Research design 

3.1.  Objective 
This study aims to evaluate the performance of three multi-armed bandit algorithms (DCTS, UCB-RS, 
and DEG) in advertising recommendation systems. The specific goal is to compare the performance of 

these algorithms under different parameter settings through experiments, so as to provide optimization 
strategies for advertising recommendation systems in dynamic non-static environments. 

3.2.  Experimental Groups 
In order to comprehensively evaluate the performance of the algorithms under different conditions, this 
study designed five experimental groups, each with different parameter configurations to simulate 

different advertising market environments and user behaviors, which are shown in Table1. The settings 
of the parameters reflect the balance between historical data and new data, and the trade-off between 
exploration and utilization. Specifically, in the DCTS algorithm, when the Lambda value is higher (such 
as 0.8), the algorithm relies more on historical data, while a lower Lambda value (such as 0.65) increases 
the tendency to explore new ads. The UCB-RS algorithm controls the intensity of exploration by 
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adjusting the values of Lambda and Alpha. In scenarios with high uncertainty in ad click-through rates, 
higher Lambda and Alpha values (such as 0.6 and 2.5) can prompt the algorithm to explore new ads 
more, while lower values (such as 0.4 and 1.8) make the algorithm more inclined to use existing ad 
recommendations. The Epsilon0 and Decay Rate parameter settings in the DEG algorithm affect the 

exploration degree and convergence speed of the algorithm in the initial stage. A higher Epsilon0 and a 
lower Decay Rate (such as 0.35 and 0.0008) allow the algorithm to maintain a higher exploration rate 
for a longer period of time, which helps to discover new efficient advertisements, while a lower Epsilon0 
and a higher Decay Rate (such as 0.25 and 0.0012) are suitable for a relatively stable advertising market. 
These parameter configurations balance exploration and utilization, historical data and new data, and 
are suitable for advertising recommendation systems under different uncertainties and market dynamics. 

Table 1. Parameters settings 

Experimental 

Group 

DCTS 

Lambda 
DCTS g 

DCTS 

Gamma 

UCB-RS 

Lambda 

UCB-RS 

Alpha 

DEG 

Epsilon0 

DEG 
Decay 

Rate 

Group 1 0.75 0.3 0.25 0.5 2 0.3 0.001 

Group 2 0.85 0.4 0.2 0.6 2.5 0.35 0.0008 

Group 3 0.65 0.2 0.3 0.4 1.8 0.25 0.0012 

Group 4 0.7 0.25 0.35 0.45 2.2 0.28 0.001 

Group 5 0.8 0.35 0.22 0.55 2.1 0.32 0.0009 

3.3.  Performance Metrics  

This study uses ROC curve, AUC value and average precision (AP) as the main performance evaluation 
indicators. ROC curve is used to analyze the performance of the algorithm under different thresholds, 
and the algorithm's ability to distinguish is judged by observing the shape and position of the curve. The 
AUC value, as the area under the ROC curve, directly quantifies the overall ability of the algorithm to 
distinguish positive and negative samples. The higher the AUC value, the better the algorithm 
performance. In addition, the average precision (AP) is used to evaluate the accuracy of the algorithm 

under high recall rate, which is particularly important for advertising recommendation systems because 
in real applications, high recall rate usually means higher user coverage and advertising click-through 
rate. 

3.4.  Experimental Procedure 

3.4.1.  Data Preprocessing  

The experiment first preprocesses the click-through rate prediction database from the Kaggle website, 
including deleting abnormal data groups to ensure the reliability of the experimental data. Then, for the 
missing values in the data, the average value of the overall data is used to fill in the missing values to 
ensure the stability and repeatability of the experimental results. 

3.4.2.  Parameter Configuration 

Different algorithm parameters are set for each experimental group to test their impact on the 
performance of the advertising recommendation system. Specifically, the DCTS algorithm adjusts the 
Lambda, g, and Gamma values to study its adaptability to different advertising environments; the UCB-
RS algorithm optimizes its performance in uncertain markets by changing the Lambda and Alpha values; 
the DEG algorithm controls the balance between exploration and utilization by adjusting Epsilon0 and 

Decay Rate. 
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3.4.3.  Algorithm Execution 
In each experimental group, the DCTS, UCB-RS, and DEG algorithms are executed to predict and 
optimize the click-through rate by simulating the actual scenario in the advertising recommendation 
system to test the performance of each algorithm under different parameter settings. 

3.4.4.  Data Analysis 
Finally, by comparing and analyzing the ROC curves, AUC values, and average precision of each 
experimental group, the impact of different parameter settings on the algorithm performance is discussed 
in detail, and then the optimal algorithm configuration scheme under different advertising market 
conditions is determined. 

4.  Research results 

It can be seen from Table2 that in all experiments, the DEG algorithm has the highest AUC value, which 
is always between 0.78 and 0.79, indicating that it performs best in distinguishing positive and negative 
samples. UCB-RS is second, with an AUC value of about 0.77. DCTS has the lowest AUC value, mainly 
between 0.74 and 0.76; at the same time, the DEG algorithm always shows the highest average precision 

(AP) in all experiments, mainly between 0.77 and 0.78. The average precision of UCB-RS is second, 
concentrated between 0.74 and 0.75. DCTS has the lowest average precision, between 0.73 and 0.76. 

Table 2. Research result 

Experiment DCTS  

AUC 

DCTS     

AP 

UCB-RS   

AUC 

UCB-RS   

AP 

DEG     

AUC 

DEG      

AP 

1 0.75 0.73 0.77 0.75 0.79 0.77 

2 0.74 0.72 0.77 0.74 0.78 0.77 

3 0.76 0.76 0.77 0.75 0.79 0.78 

4 0.75 0.74 0.77 0.74 0.79 0.78 

5 0.74 0.72 0.77 0.74 0.79 0.77 

 
By analyzing the ROC curves of the three algorithms from Figure1 and Figure2, it can be seen that 

the curve trends of the three algorithms are very close, and the AUC values are also relatively similar. 
This shows that under these experimental settings, the performance of the three algorithms in 
distinguishing positive and negative samples is not much different. In most experiments, the AUC value 
of the DEG algorithm is slightly higher than that of the other two algorithms, which means that under 
the given experimental settings, the overall performance of the DEG algorithm under the ROC curve is 

slightly better. 
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Figure 1. ROC Curve Comparison for 

All Experiments 

 

 Figure 2. Precision-Recall Curve 

Comparison for All Experiment 

In general, in all experiments, DEG has the highest AUC and AP values, indicating that it can not 
only effectively distinguish positive and negative samples in advertising recommendation, but also 
maintain a high precision at a high recall rate. For UCB-RS, although it does not perform as well as 
DEG, it is still stable in AUC and AP values, indicating that it has good balance and robustness in 
advertising recommendation. In all experiments, DCTS has the lowest AUC and AP values, especially 
at high recall rates, where its precision drops rapidly, indicating that it has a weaker ability to adapt to 
new ads. 

5.  Result analysis 

After comparatively analyzing the Precision-Recall curves of the three algorithms, we found that the 
Dynamic Epsilon Greedy (DEG) algorithm can maintain high precision even under high recall, which 
shows that it has significant advantages in identifying positive samples. The performance of the UCB-
RS and DCTS algorithms is relatively stable under high recall conditions, although their accuracy has 
declined in some tests, especially DCTS, which performed poorly in some tests. Taken together, the 

DEG algorithm shows the best AUC and accuracy in multiple experiments. The DEG algorithm 
successfully balances the click-through rate and advertising display effect by dynamically adjusting the 
exploration and utilization strategies, making it the best-performing algorithm. 

The main reason why the DEG algorithm performs well is that it dynamically balances the 
relationship between exploration and utilization. Especially in the field of advertising recommendation, 
the high degree of uncertainty and variability in this field places higher requirements on the adaptability 
and robustness of the algorithm. The DEG algorithm continuously adjusts the epsilon value and 

dynamically adjusts the proportion of exploration and utilization according to environmental changes, 
so that it can still maintain high performance when facing different advertising recommendation 
scenarios. In contrast, although the UCB-RS algorithm performs well in some scenarios, its exploration 
mechanism is relatively fixed and cannot respond to different market environments as flexibly as the 
DEG algorithm. The poor performance of the DCTS algorithm may be attributed to its insufficient 
precision when dealing with high recall rates, which indicates that it has certain limitations in the 
identification of positive and negative samples. 

Based on the experimental results, it is recommended to prioritize the DEG algorithm in actual 
advertising recommendation systems and further optimize its parameters to improve performance. The 
DEG algorithm can not only effectively respond to changes in the advertising market, but also achieve 
the best balance between click-through rate and display effect. Although DEG performs well, in future 
work, it can be considered to combine the exploration mechanism of the UCB-RS algorithm with the 
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DEG algorithm to further improve its performance in the dynamic advertising market. In addition, real-
time adjustment strategies as the market changes are also worth considering, which will help improve 
the effectiveness of the advertising recommendation system in various scenarios. 

The DCTS algorithm leverages historical medical data to recommend treatments for chronic diseases, 

making it effective in data-rich scenarios but less so with new or rare conditions due to its reliance on 
past data. The UCB-RS algorithm balances the exploration of new treatments with the utilization of 
known ones by calculating confidence intervals, suitable for complex medical scenarios where treatment 
efficacy is uncertain. The DEG algorithm adapts dynamically between exploring and exploiting 
treatment options, ideal for personalized medicine and chronic disease management, although it requires 
rigorous risk management to ensure safety and effectiveness in its exploratory approaches. 

6.  Conclusion 

This study evaluates the performance of three multi-armed bandit algorithms—DCTS, UCB-RS, and 
DEG—in advertising recommendation systems. Comparative analysis found that in dynamic 
environments, the DEG algorithm performed superiorly in terms of AUC. The DEG algorithm can 
effectively balance exploration and utilization, optimize advertising display based on real-time data, and 
demonstrate excellent adaptability under rapidly changing user preferences. These findings suggest that 

advertising recommendation systems should prioritize the implementation of flexible algorithms like 
DEG that can swiftly adapt to changing user behaviors, thereby enhancing user engagement and CTR. 

The research results show that the DEG algorithm maintained the highest AUC value in all 
experiments, indicating that it has significant advantages in distinguishing positive and negative samples. 
In addition, the DEG algorithm can still maintain high precision under high recall, which emphasizes its 
application potential in dynamic advertising recommendation. These conclusions not only provide 
scientific basis for algorithm selection and parameter adjustment of advertising recommendation 
systems, but also point out the direction for the development of advertising recommendation technology. 

In terms of implications for future research, the findings of this paper help close the knowledge gap 
in applying multi-armed bandit algorithms in non-static environments. Future research should focus on 
optimizing the parameter settings of the DEG algorithm and exploring hybrid approaches that integrate 
the exploration mechanisms of UCB-RS, aiming to enhance performance in dynamic advertising 
contexts. In addition, the study also suggests combining the exploration mechanism of UCB-RS with 
DEG to further improve the performance of the algorithm in the dynamic advertising market. This study 
not only contributes to the theoretical understanding of multi-armed bandit algorithms in advertising but 

also offers practical insights for their implementation, paving the way for future research in adaptive 
recommendation systems. 
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