
 

 

Machine learning and propensity score matching for 

evaluating the effect of special education services on children’s 

later math performances  

Liyao Huang
 

Mathematics and Applied Mathematics, College of  Sciences, Shanghai University, 
Shanghai, China 

claire0623_aboutmaths@shu.edu.cn 

Abstract. The goal of the research is to analyze the effect of special education service brought 

to children’s later math performance. The dataset is derived from Early Childhood Longitudinal 
Studies(ECLS) program and the children being studied come from diverse socioeconomic and 

racial/ethnic backgrounds. We applied PSM and modern machine learning methods including 

OLS, KNN, BART and MLP on the data in order to calculate the average treatment effect of 

special education services. It turned out that all the listed machine learning algorithms with 

comparatively low STD outperformed the traditional propensity score matching. KNN, BART 

and OLS excelled, offering much more stable calculations. The value of ATE computed through 

all the methods appeared below zero. By applying linear regression and PCA on all the 

influencing factors, the analysis revealed that the differences of some factors between the 

controlled and exposed groups led better math performances to appear usually in the absence of 

special treatment. Thus, special treatment effect led the trained model to predict lower scores, 

which finally caused the difference to be negative. 

Keywords: Causal Inference, Machine Learning, Propensity Score Matching, Principal 

Component Analysis. 

1.  Introduction 

To maintain the long goal of Early Childhood Longitudinal Studies(ECLS) program, the research is 
conducted primarily conducted to investigate and evaluate the effect of special education service brought 
to children’s later math performance. The children being studied come from diverse socioeconomic and 
racial/ethnic backgrounds. In addition to the reception of special education services regarded as the 

exposure variable in our study, children varied in other factors associated with demographic, academic, 
school composition, family context health and parent rating of child, which can all possibly influence 
their math test scores and may also impact their likelihood of receiving the special education services. 

Thus, the situation remains consistent with the theory of causal inference pointing out the difficulty 
of calculating the accurate treatment effect in non-randomized experiments. The most widely used 
method to minimize the impact of confounding variables is propensity score analysis. Nowadays, lots 
of machine learning algorithms are proposed to predict the outcome values if the controlled groups were 

to be treated or the exposed group had not received treatment. By predicting the outcomes, the problem 
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about randomization can be settled naturally. In our research, we applied Propensity Score Matching, 
Linear Regression, K-Nearest Neighbors, Bayesian Additive Regression Tree and Multi-Layers 
Perception to compute the average treatment effect(ATE). Besides, standard deviation(STD) of 
individual treatment effect is evaluated as well. By comparing the values of STD, more preferable 

methods stand out. 

2.  Literature Review 

2.1.  Traditional Causal Inference 

Considering the potential causal relationship between observed features and past incidents, scientists 
proposed and developed the Rubin Causal Model to logically describe the causal inference, providing a 
meticulous and useful framework for experiments in causal inference. This model was applied in 
Holland and Rubin (1980) to analyze causal inference in retrospective, case-control studies used in 
medical research and in Holland and Rubin (1983) to analyze Lord's analysis of covariance" paradox[1]. 
In this model, we use the following notation: for each unit u in U, Y(u) is the response variable(the 
outcome). “S” indicates the exposure of the unit during the experiment. For all the units, they would 

either receive certain treatment or not, which is usually regarded as controlled. The two conditions are 

denoted as follows: S = t(treatment)/S = c(control) . Moreover, Y(u) are specified into  
𝑌𝑡(𝑢) 𝑎𝑛𝑑 𝑌𝑐(𝑢), representing the response value of all units in U exposed to 2 conditions respectively. 

The effect of cause is defined as 𝑌𝑡(𝑢) − 𝑌𝑐(𝑢) . Since 𝑌𝑡(𝑢) 𝑎𝑛𝑑 𝑌𝑐(𝑢)  cannot be derived 
simultaneously for the same unit, which is called the Fundamental Problem of Causal Inference. To 
quantify the effect of cause statistically and solve the problem, the Rubin Causal Model puts forward 
several assumptions and utilizes the expectation. Considering ATE(Average Treatment Effect) as the 

variable indicating the quantified average effect of the cause, then we have the following equation: 

                                             𝐴𝑇𝐸 = 𝐸(𝑌𝑡(𝑢)  − 𝑌𝑐(𝑢)) = 𝐸(𝑌𝑡(𝑢)) − 𝐸(𝑌𝑐(𝑢))                                          (1) 

By this equation, we can derive the exact value of the effect by calculating the average of response 
values for the treated condition and the controlled condition separately and doing the subtraction. As is 
mentioned above, the model is based on several kinds of assumption: 

Temporal Stability: It is assumed that the causal effect of the treatment on the outcome is stable 

over time and across subgroups within the population. The value of 𝑌(𝑢, 𝑐) does not depend on when 
the sequence "apply c to u then measure Y on u" occurs[1]. 

Causal Transience: The value of 𝑌(𝑢, 𝑡) is not influenced by the previous exposure of u to c.[1] 

Unit Homogeneity: Scientists in the laboratory prepare two units 𝑢1, 𝑢2 conscientiously so that they 

appear identical in all relevant aspects to be convinced that 𝑌(𝑢1, 𝑡) = 𝑌(𝑢2, 𝑡) 𝑎𝑛𝑑 𝑌(𝑢1, 𝑐) =
𝑌(𝑢2, 𝑐) always hold. 

Independence: This assumption can be interpreted as two equations: 

                                                                      {
𝐸(𝑌𝑡(𝑢)) = 𝐸(𝑌𝑡|𝑆 = 𝑡)
𝐸(𝑌𝑐(𝑢)) = 𝐸(𝑌𝑐|𝑆 = 𝑐)

                                                             (2) 

Here, 𝐸(𝑌𝑡(𝑢)) 𝑜𝑟 𝐸(𝑌𝑐(𝑢)) represents the average response value of all the units when exposed to 

t or c, while 𝐸(𝑌𝑡|𝑆 = 𝑡) 𝑜𝑟 𝐸(𝑌𝑐|𝑆 = 𝑐) means the average response value of part of the whole U with 
the exposure to t or c. If (2) holds, we have 

                                          𝑇 = 𝐸(𝑌𝑡(𝑢) − 𝑌𝑐(𝑢)) = 𝐸(𝑌𝑡(𝑢)) − 𝐸(𝑌𝑐(𝑢))                                                  (3) 

                                                 𝑇𝑃𝐹 = 𝐸(𝑌𝑡|𝑆 = 𝑡) − 𝐸(𝑌𝑐|𝑆 = 𝑐)                                                                    (4) 

                                                                   𝑇 = 𝑇𝑃𝐹                                                                                                  (5) 

By this formula, we can divide the original large sample into two parts (S=t/S=c) and observed the 
difference, recording the response value respectively. 

Constant Effect: The effect of t on each unit u is regarded to be constant. 
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                                                        𝑇 = 𝑌𝑡(𝑢) − 𝑌𝑐(𝑢) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, ∀𝑢 ∈ 𝑈                                                  (6) 

If Unit Homogeneity holds, constant effect must be true, implying that Unit Homogeneity is a 
sufficient(stronger) condition for constant effect. 

Randomized Controlled Trial&Exogenous Treatment Assignment: The units are randomly 

divided into two groups: one in the treatment group and one in the control group(S=t/S=c). The treatment 
outcome is the outcome that would occur if the individual received the treatment, while the control 
outcome is the outcome that would occur if the individual had not received the treatment. The 
assignment of treatments must be exogenous to the potential outcomes—meaning that it must not be 
systematically related to the potential outcomes.  

No Unmeasured Confounders: Unmeasured confounders are ensured to be excluded, meaning that 
all factors that could affect both the treatment assignment and the outcome have been measured and 

controlled for, since it is critical to avoid biased estimates of causal effects. 
Based on the Rubin Causal Model and our ideal hypothesis, we compute 𝑇 = 𝐸(𝑌𝑡(𝑢) − 𝑌𝑐(𝑢)) =

𝐸(𝑌𝑡(𝑢)) − 𝐸(𝑌𝑐(𝑢)). That is because the sample and the treatment are independent and will not 
influence each other, usually guaranteed by randomized experiment. 

However, in most cases, without appropriate randomization, some experiments involve samples that 

will correlate with the treatment systematically, resulting in the inequality between 𝐸(𝑌𝑡(𝑢)) and 

𝐸(𝑌𝑡|𝑆 = 𝑡) and the equation of T will not hold. In such situation, we need to distinguish the disturbed 
one. So Propensity Score plays a key role by indicating the probability a unit receiving a particular 
treatment or intervention, given a set of observed characteristics or covariates.  

                                                                𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 ≜ 𝑃(𝑆𝑖 = 𝑡|𝑈𝑖)                                                   (7) 

It can be calculated through Logistic Regression in several computer language such as R[2]. 
Moreover, Bayesian Network can also applied through structure learning to preclude non-causal 
relations[3]. 

2.2.  Machine Learning in Causal Inference 

With the development of computer science and statistics, when dealing with tremendous amounts of 
data, machine learning provides efficient and precise methodology for researchers to analyze the 
experimental data. In Causal Inference, numerous ML techniques have been developed and applied in 
various studies. Traditional method such as ordinary least squares(OLS) for linear regression has been 
widely used in many studies, but they were limited when encountering more complicated datasets. More 
new developed ML methods such as K nearest neighbors(KNN), Bidirectional and Auto-Regressive 
Transformers(BART), Optimal Discriminant Analysis(ODA), Neural Network(NN),etc[4,5,6,7].One 
research utilized BART model to compute a causal estimand called TEA to estimate the number of 

adverse health events prevented by large-scale air quality regulations via changes in exposure to multiple 
pollutants, which outperformed standard parametric approaches[4]. Neural Networks were applied to a 
new causal model by building a ML proxy predictor of the conditional average treatment effect, followed 
by the consequence showing the practical use of the method and its advantage to avoid making strong 
assumptions[5]. Moreover, the application of both regression-based algorithm and optimal discriminant 
analysis to estimate multi-valued treatment effects using data from an intervention including three study 
groups revealed that ODA is a robust alternative to conventional regression-based models for estimating 

effects in multivalued treatment studies due to its insensitivity to skewed data and use of accuracy 
measures applicable to all prognostic analyses[6]. Generally speaking, different data structures 
correspond to different causal methods[7]. In most cases, including the researches listed above, new ML 
models surpass traditional regression model. 
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3.  Methodology 

3.1.  Overview of Our Experiment 

The flowchart of our whole work: 

 

Figure 1. Flowchart of the Whole Research 

3.2.  Propensity Score Matching 
As was mentioned before, in fact some experiments involve samples that will correlate with the 

treatment systematically, resulting in the inequality between 𝐸(𝑌𝑡(𝑢))  and 𝐸(𝑌𝑡|𝑆 = 𝑡) . As a 
consequence, the difference between the outcomes of the controlled and the treatment groups does not 
merely shows the effect caused by the treatment but also those potentially contributed by the 

confounding variables. 

 

Figure 2. Relationships of Variables, Treatment and Outcome 

Thus, Propensity Score Matching serves to construct an artificial control group by matching each 
treated unit with a non-treated unit of similar characteristics in order to reduce the error for estimating 
the treatment effect, which is a useful method in data analysis for estimating the impact of a program or 

event for which it is not ethically or logistically feasible to randomize. Let’s review the definition of 
propensity score: 
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                                                          𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 ≜ 𝑃(𝑆𝑖 = 𝑡|𝑈𝑖)                                                         (8) 

The score indicates the probability a unit receiving a particular treatment or intervention, given a set 
of observed characteristics or covariates. By knowing the definition, Propensity Score Analysis can be 
eventually divided into several steps. First, we need to collect data including all possible confounding 

variables that influence both the selection of treatment and the outcome variable. Then, having all the 
data, logistic regression model is commonly adopted as the propensity model to predict the propensity 
score equivalent to the probability of receiving the treatment given the confounders. By comparing the 
calculated propensity score, we manage to find a control record with the most similar propensity score 
for each example in the treatment group. Obtaining the match results, the quality of the matched records 
can be evaluated by comparing the similarity of the covariates. Finally, utilizing the new controlled 
group and the corresponding exposed group, the difference as well as the ATE can be computed. 

3.3.  Machine Learning Algorithms 

3.3.1.  Linear Regression: Ordinary Least Square 
The most conventional method to analyze the correlations between the factors and the results is Linear 

Regression by Ordinary Least Square (OLS). The mentioned “Least Square” stands for the minimal 
square errors(SSE), which can be derived by adding the square differences of the observed and predicted 
values altogether. 

Here we make the following assumptions: 
the factor variables of all the trained objects:  

 

𝑋 = (

1 𝑥11 𝑥12
1 𝑥21 𝑥22

⋯ 𝑥1𝑛
⋯ 𝑥2𝑛

⋮ ⋮ ⋮
1 𝑥𝑚1 𝑥𝑚2

⋱ ⋮
⋯ 𝑥𝑚𝑛

) 

the observed values: 𝐘 = (𝑦1, 𝑦2 ,⋯ , 𝑦𝑚)
𝑇  the predicted value: 𝐘 = (𝑦̂1, 𝑦̂2 ,⋯ , 𝑦̂𝑚)

𝑇  
Since we assume the relation between the influential factors and the results can be expressed linearly, 

there exist 𝛃 = (β0, β1, β2, ⋯ , βn)
T such that 𝐘 = 𝑋𝛃 

By the definition of square errors, we have  

                              𝑆𝑆𝐸 =∑(𝑦̂𝑖 − 𝑦𝑖)
2

𝑚

𝑖=1

= (𝐘 −𝐘)𝑇(𝐘 − 𝐘) = (𝑋𝛃−𝐘)𝑇(𝑋𝛃− 𝐘)                        (9) 

The aim is to find the optimal 𝛃∗ to minimize SSE. Therefore, by the necessary optimal condition, it 

is required that 𝛻𝑆𝑆𝐸(𝛃
∗) = 0 i.e. 2𝑋𝑇(𝑋𝛃∗ − 𝐘) = 0 

Finally, we can derive the optimal coefficients for the linear regression: 

                                                                       𝛃∗ = (𝑋𝑇𝑋)−1𝑋𝑇𝒀                                                                   (10) 

More specifically, if only one factor is researched, we have 𝑋 = (
𝑥1
1
  
𝑥2
1
  
⋯
⋯  
𝑥𝑚
1
)𝑇 , 𝛃 = (𝛽0, 𝛽1)

𝑇 

                                    𝑆𝑆𝐸 =∑(𝑦̂𝑖 −𝑦𝑖)
2

𝑚

𝑖=1

=∑(𝛽1𝑥𝑖 +𝛽0 −𝑦𝑖)
2

𝑚

𝑖=1

                                                    (11) 

By the necessary optimal condition, we have  
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{
 
 

 
 𝛻𝑆𝑆𝐸(𝛽1

∗) = 2∑𝑥𝑖(𝛽1𝑥𝑖 + 𝛽0 − 𝑦𝑖)

𝑚

𝑖=1

= 0                                                (12)

𝛻𝑆𝑆𝐸(𝛽0
∗) = 2∑(𝛽1𝑥𝑖 + 𝛽0 −𝑦𝑖)

𝑚

𝑖=1

= 0                                                    (13)

 

Solving the equations, the coefficients can be precisely calculated as: 

                                           {
𝛽1
∗ =

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑚
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2
𝑚
𝑖=1

                                                                           (14)

𝛽0
∗ = 𝑦̅ − 𝛽1

∗𝑥̅                                                                                                     (15)

 

3.3.2.  KNN Algorithm 
Different from traditional methods, machine learning excels by its robust adaptability for various 
datasets. K-Nearest Neighbor Algorithm(KNN) is a widely used machine learning technique. After 
calculating the distance between input data and all the training sample points, the algorithm select K(the 
number of the selected points) nearest neighboring samples. For classification, the most common labels 
among the chosen neighbors is regarded as the predicted label of the input data. For regression, we 
assign the (weighted) average of the sample values of the neighbors as the predicted value of the input 
data. Obviously, the performance of the algorithm depends on parameter “K” and the distance metric[8]. 

Usually, the distance metric is determined among the following: 

Euclidean distance(‖𝑥‖2):  

                                                                 𝑑(𝐱, 𝐲) = √∑(𝑦𝑖 −𝑥𝑖)2                                                                 (16) 

Manhattan distance(‖𝑥‖1): 

                                                                    𝑑(𝐱, 𝐲) =∑|𝑦𝑖 −𝑥𝑖|                                                                    (17) 

Minkowski distance(‖𝑥‖𝑝): 

                                                                𝑑(𝐱, 𝐲) = (∑(𝑦𝑖 −𝑥𝑖)
𝑝)
1
𝑝                                                                 (18) 

3.3.3.  Bayesian Additive Regression Tree 
Combining the idea of regression and tree-based model, Bayesian Additive Regression Tree(BART) 

algorithm utilize sum of trees to approximate an unknown function  𝑓. Suggesting there is an unknown 

function  𝑓 for predicting 𝑦 based on the input 𝑥 :  

                                                                𝑦 = 𝑓(𝐱) + 𝜀,       𝜀~𝒩(0, 𝜎2)                                                          (19) 

BART uses sums of trees ∑𝑔𝑗(𝐱)  where 𝑔𝑗(𝐱) denotes a regression tree to approximate the 

unknown function  𝑓  : 

                                                                         𝑓(𝐱) ≈ ℎ(𝐱) =∑𝑔𝑗(𝐱)

𝑚

𝑗=1

                                                         (20) 

                                                             ⟹ 𝑦 = ℎ(𝐱) +  𝜀,       𝜀~𝒩(0, 𝜎2)                                                     (21) 

Let T denote a binary tree and assume the tree has b terminal nodes, then 𝐌= (𝜇1, 𝜇2,⋯ , 𝜇𝑏) 
represents the parameter values corresponding to each of the terminal nodes. So, for a binary tree, each 

input value x is associated with a single terminal node of T and is then assigned the 𝜇𝑖  value 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/88/20241713 

223 



 

 

corresponding to this node. Given the input x and the tree T with a set of parameters M, the regression 

tree can be denoted as 𝑔(𝐱; 𝑇,𝑴). 
Based on this notation, the sum-of trees model can be mathematically written as: 

                                                𝑦 = ∑𝑔(𝐱; 𝑇𝑗 ,𝐌𝑗)

𝑚

𝑗=1

+  𝜀,       𝜀~𝒩(0, 𝜎2)                                                     (22) 

For each binary regression tree 𝑇𝑗 , a set of parameters 𝐌𝑗 = (𝜇1𝑗, 𝜇2𝑗,⋯ , 𝜇𝑏𝑗) is associated with the 

tree’s terminal nodes.  

The sum-of-trees model manage to incorporate both main effects and interaction effects. Large 
number of trees endows BART algorithm with robust predictive capabilities. For a fixed number of trees 

as m, (𝑇1, 𝐌1),⋯ , (𝑇𝑚,𝐌𝑚), 𝜎 finally specify the sum-of-trees model, which is completed by imposing 
a prior over all the parameters aiming to limit the scale of individual tree preventing their effects from 
being exceedingly influential. 

Firstly, it is assumed that the tree components  (𝑇𝑗,𝐌𝑗) are independent of each other as well as 𝜎 

and the terminal node parameters of every tree are independent. 
Then we have the following equations: 

           𝑝 ((𝑇1,𝐌1),⋯ , (𝑇𝑗 ,𝐌𝑗), 𝜎) = [∏𝑝(𝑇𝑗,𝐌𝑗)

𝑗

] 𝑝(𝜎) (23) 

                                                           = [∏𝑝(𝑴𝑗|𝑇𝑗)𝑝(𝑇𝑗)

𝑗

]𝑝(𝜎)                                                                 (24) 

                                                             𝑝(𝐌𝑗|𝑇𝑗) =∏𝑝(𝜇𝑖𝑗|𝑇𝑗)

𝑗

                                                                    (25) 

According to equation (24) and (25),1. the original specification problem is converted into the 

specification of 𝑝(𝑇𝑗), 𝑝(𝜇𝑖𝑗|𝑇𝑗) 𝑎𝑛𝑑 𝑝(𝜎).  So the prior is separated into three parts: the 𝑇𝑗  prior, the 

𝜇𝑖𝑗|𝑇𝑗 prior, and the 𝜎 prior. 

1) The 𝑇𝑗  prior    

The distribution on the splitting variable assignments and the distribution on the splitting rule 
assignment is the uniform prior on each binary tree distribution. In addition, the probability that a node 

at depth 𝑑 = (0,1,2,⋯) is nonterminal require further specification. The specification is given by: 
𝛼

(1+𝑑)𝛽
,   𝛼 ∈ (0,1) 𝑎𝑛𝑑 𝛽 ∈ [0,∞). To keep individual tree components small, usually we adopt 𝛼 =

0.95 𝑎𝑛𝑑 𝛽 = 2. 
 

2) The 𝜇𝑖𝑗|𝑇𝑗 prior 

The output data y will be rescaled ranging from  𝑦𝑚𝑖𝑛 = −0.5 𝑡𝑜 𝑦𝑚𝑎𝑥 = 0.5. 
Then the prior is: 

                                                                    𝜇𝑖𝑗~𝒩(0, 𝜎𝜇
2), 𝜎𝜇 =

0.5

𝑘√𝑚
                                                     (26) 

The prior exerts the effort to shrink the parameter 𝜇𝑖𝑗  toward zero. When k or m increases, the 

shrinkage to the 𝜇𝑖𝑗 accelerates, making the prior tighter. 

3) The 𝜎 prior 
The prior exploit inverse chi-square distribution: 
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                                                                                            𝜎2~
𝜐𝜆

𝜒𝜐
2                                                                        (27) 

where 𝜐 stands for the degree of freedom and 𝜆 is the scale. 

We calibrate the prior for the degree of freedom 𝜐 and scale 𝜆 for this purpose using a rough data-

based overestimate 𝜎̂  of 𝜎 . Usually, there are two natural choices: naïve specification (the sample 
standard deviation of sample y) and the linear model specification (the residual standard deviation from 

a least squares linear regression of y on the original X). Then a value of 𝜐 is picked between 3 and 10 to 

derive an appropriate shape and a value of 𝜆 is chosen such that the 𝑞th quantile of the prior on 𝜎 is 
located at 𝜎̂. The value of 𝑞 is always considered such as 0.75,0.90 or 0.99 to center the distribution 

below 𝜎̂. 

For automatic use, Chipman et al. [9] recommend the default setting (𝜈, 𝑞) = (3,0.90). 
For the fixed tree number 𝑚, a fast and robust option is to set 𝑚 as 200. 
Given the observed data y of the sample value x, the Bayesian setup induces a posterior distribution: 

                                                                     𝑝 ((𝑇1,𝐌1),⋯ , (𝑇𝑗,𝐌𝑗), 𝜎| 𝑦)                                             (28) 

Through approaches such as a backfitting MCMC algorithm proposed by Chipman et al. [9] and 
Particle Gibbs proposed by Lakshminarayanan et al. [10], the parameters can be specified. 

As a consequence, the BART model can successfully output a posterior mean estimate of 𝑓(𝐱) =
𝐸(𝑦 | 𝐱). 

Table 1. Iteration of BART Algorithm 

The iteration of the algorithm 

Initialize the model: 

(𝑇1
(1))𝐌1

(1)

(𝐱) = (𝑇2
(1))𝐌2

(1)

(𝐱) = ⋯ = (𝑇𝑚
(1))𝐌𝑚

(1)

(𝐱) =
1

𝑛𝑚
∑𝑦𝑖

𝑛

𝑖=1

 

Compute 𝑓(1)(𝐱) = ∑ (𝑇𝑡
(1))𝐌𝑡

(1)

(𝐱)𝑚
𝑡=1  

Begin iteration :  

For 𝑘 = 2,3,⋯ ,𝐾 

For 𝑗 = 1,2,3,⋯ ,𝑚 

    Compute 𝑅−𝑗
(𝑘)
= 𝑦 − ∑ (𝑇𝑡

(𝑘)
)𝐌𝑡

(𝑘)

(𝐱)𝑡<𝑗 − ∑ (𝑇𝑡
(𝑘−1)

)𝐌𝑡
(𝑘−1)

(𝐱)𝑡>𝑗  

    Sample 𝑝(𝑇𝑗 | 𝑅−𝑗
(𝑘)
, (𝜎(𝑘−1))2), derive 𝑇𝑗

(𝑘)
 

    Sample 𝑝(𝐌𝑗 | 𝑇𝑗, 𝑅−𝑗
(𝑘)
, (𝜎(𝑘−1))2), derive 𝐌𝑗

(𝑘)
 

 Compute 𝑓(𝑘)(𝐱) = ∑ (𝑇𝑡
(𝑘))𝐌𝑡

(𝑘)

(𝐱)𝑚
𝑡=1  

 Compute 𝜀(𝑘) = 𝑦 − 𝑓(𝑘)(𝐱) 

 Sample 𝑝(𝜎2 | 𝑇1
(𝑘)
,𝐌1

(𝑘)
, ⋯ , 𝑇𝑚

(𝑘)
,𝐌𝑚

(𝑘)
, 𝜀(𝑘)), derive (𝜎(𝑘))2 

Final BART model: 

𝑓(𝐱) =
1

𝐾 − 𝐿
∑ 𝑓(𝑘)(𝐱)

𝐾

𝑘=𝐿+1

 

3.3.4.  Neural Network: Multi-Layer Perception 
Among machine learning techniques, Neural Network is a popular method. Its archetypical model Multi-

layer Perceptron is a supervised learning algorithm that learns a function 𝑓: 𝑅𝑚 ⟶𝑅𝑜 by training on a 

dataset where 𝑚 is the number of dimensions for input and 𝑜 is the number of dimensions for output. 
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Given a set of features 𝐗 = 𝑥1 , 𝑥2,⋯ , 𝑥𝑚 and a target y, it can learn a non-linear function approximator 
for either classification or regression. The model consists of multiple non-linear layers usually called 
the hidden layers. 

Without loss of generality, we can assume now we have input data 𝐗 = 𝑥1 , 𝑥2,⋯ , 𝑥𝑚  and the hidden 

layer 𝐇 = ℎ1, ℎ2,⋯ , ℎ𝑜. The model serves to compute the target value y. 

For each element 𝑥𝑖, it has a set of weight values {𝑤𝑖1,𝑤𝑖2,⋯ ,𝑤𝑖𝑜} corresponding to the calculation 
of the elements in the hidden layer: 

ℎ𝑗 = 𝑓 [(∑𝑤𝑖𝑗𝑥𝑖

𝑚

𝑖=1

)+ 𝑏] , 𝑗 = 1,2, ⋯ , 𝑜 (29) 

where f is a function which can be either linear or non-linear(more often). 
Three types of commonly adopted funcitons: 

1) relu:  

                                                                      𝑦 = 𝑚𝑎𝑥(0, 𝑥)                                                                                (30) 

2) tanh:   

                                                                        𝑦 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                                               (31) 

 
3) sigmoid:  

                                                                          𝑦 =
1

1 + 𝑒−𝑥
                                                                                (32) 

Then for the hidden layer 𝐇, each element has a set of weight values for the next layer. 

 

Figure 3. Working Mechanism of MLP 

 
If the hidden layer is the last layer before the output data as the graph shows, then we can calculate 

the target value y: 

𝑦 = (∑𝑣𝑖ℎ𝑖

𝑜

𝑖=1

)+ 𝑠 (33) 
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Since there are several numerous parameters involved in the computing process, they need to be 
specified. They are specified to obtain the minimized error for the training datasets. 

If we denote the predicted target values for the training data as 𝐲̂ = (𝑦̂1, 𝑦̂2 ,⋯ , 𝑦̂𝑛) where n is the 

sample size and consider 𝐲 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛) as the observed data. 
Then the error can be described as:  

                                                                         ‖𝐲 − 𝐲̂‖2
2 =∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                                                        (34) 

Since the predicted value 𝐲̂ was determined by parameter (𝑤𝑖𝑗)𝑚×𝑜 , 𝑏, 𝑣𝑖  and 𝑠, we can also denote 

the error as a loss function:𝐿(𝜙(𝐱;𝑤, 𝑏, 𝐯, 𝑠), 𝑦). Then to derive the most satisfying parameters, we need 
to solve the following optimization problem: 

                                                                            𝑚𝑖𝑛
𝑤,𝑏,𝐯,𝑠

𝐿(𝜙(𝐱;𝑤, 𝑏, 𝐯, 𝑠), 𝑦)                                                    (35) 

Usually for optimization, there are approaches for us to adopt to compute the solutions, such as 
Stochastic Gradient Descent(SGD), momentum method, Nesterov Accelerated Method and 

AdaGrad/RMSProp/AdaDelta/Adam Algorithms. 

4.  Experiment and Result 

4.1.  Data Description 

In our experiment, the data originally come from the Early Childhood Longitudinal Studies (ECLS) 
program, Kindergarten Class of 1998-1999 (ECLS-K). The dataset contains a wide range of family, 
school, community, and individual factors related to children's development, early learning, and 
performance in school. To be more detailed about our evaluation about the causal inference, the 
covariates consist of factors related to demographic, academic, school composition, family context, 
health and parent rating of child. The treatment here is indicated by the exposure variable “Special 
Education Services” which is denoted as F5SPECS. For the purpose of the ECLS-K, children with 

disabilities are those who meet the federal eligibility requirements for participation in special education 
programs or services. All children with disabilities are expected to have an Individualized Education 
Plan (IEP), an Individualized Family Service Plan (IFSP), or a 504 Plan on file with the school district 
as it is a required component of the eligibility process. 

After data pre-processing, the whole datasets consisted of 7362 cases, 429 of which received special 
education services. Whether a child was regarded as a recipient of special education services depended 
on their special education status gathered from school administrative records from the spring of 2002[2]. 

According to the past analysis in an issue brief by IES describing Demographic and School 
Characteristics of Students Receiving Special Education in the Elementary Grades[11], for the cohort 
of students beginning kindergarten in 1998, specific learning disabilities and speech or language 
impairments were the most prevalent primary disabilities over the grades studied.Higher percentages of 
boys than girls and of poor students than non-poor students received special education. In each grade 
studied, public schools reported higher percentages of students receiving special education than did 
private schools. 

Meanwhile, the ECLS-K Revised IRT scaled math achievement test score ranging from 50.9 to 170.7 

is considered the outcome variable.  

4.2.  Result and Experiment of Causal Inference 
In the coding process, we mainly chose python to run the models through different models to calculate 
the average treatment effect and the standard deviation of individual treatment effect. By comparing the 
the standard deviation of individual treatment effect, we can assess the performance of all the applied 

methods. The computing process can be categorized into two parts composed of different steps to solve 
the fundamental problem of calculate treatment effect: 
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1) In the method of Propensity Score Matching, we first adopt logistic regression based on the 
covariates and the exposure variable to compute the probability of each individual receiving the 
treatment with their covariates information. By matching the exposed individual(n=429) with the 
controlled one having the closest score to the exposed one and then subtracting the controlled score from 

the exposed score, we can derive individual treatment effect and compute ATE and the standard 
deviation of ITE(n=429). 

2) In the machine learning part, by applying the packages that are already created for logistics 
regression, OLS, KNN, BART, MLP on the whole datasets, we trained models predicting the outcomes 
based on the covariates and the exposure variables. Then we reversed the exposure variables(changing 
0 to 1, changing 1 to 0) and evaluate new outcomes. Eventually, we obtain the response variables of the 
whole datasets(n=7362) under both circumstances. Subtracting the controlled score from the exposed 
score, we derive the individual treatment effect and compute ATE and the standard deviation(STD) of 

ITE(n=7362). 

Table 2. ATE & Standard deviation of Individual Treatment Effect computed by Listed Algorithms 

Methodology 
MLP 

(linear-tanh-linear) 
KNN OLS BART PSM 

ATE -22.35 -0.22 -7.08 -6.12 -20.65 

STD 23.90 14.23 15.64 15.16 34.66 

 

Surprisingly, the average treatment effects of Special Education Services calculated turn out to be all 
minus. Besides, the standard deviation revealed that KNN, OLS and BART are more stable with better 

performances in calculating ATE. Whereas, MLP and PSM brought higher STD values indicating the 
fluctuation of the individual treatment effect among the datasets. 

4.3.  Factor Analysis 
It may seem surprising that the treatment effect evaluated turned out to be minus. Since the datasets 
containing 7363 sets of data only have 429 test takers experiencing special education services. So the 

minority of the exposed individuals suggesting some hidden selection bias serves as a possible reason 
explaining why the average treatment effects calculated by all methods are minus. 

 
Figure 4. Histograms of Math Scores of Controlled and Exposed Groups 

Table 3. Mean and Standard Deviation of Math Scores of Controlled and Exposed Groups 

 Mean STD 

Controlled Group 128.19 22.67 

Exposed Group 108.97 26.77 

 
According to the histograms of the controlled and the exposed group, we can easily conclude that 

scores of exposed group are symmetrically distributed. Comparatively, the controlled scores are skewed 
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toward higher scores. Consequently, the mean score of controlled group is originally higher than the one 
of the exposed score. Thus, we can probably speculate that the exposed group receiving special 
educational service have potential disadvantage inherently such as intelligence disabilities or 
psychological problems in terms of math performance. Meanwhile, when the machine learning 

algorithms begins to learn the datasets, the higher scores are often appeared without the special treatment. 
Vice Versa, the special treatment is always accompanied by lower math scores, leading the trained 
model to predict higher/lower scores when treatment variable turns into 0/1, which finally caused the 
difference to be minus. What factors actually cause the outcomes to be different? Here we adopt the 
traditional regression method OLS to compute the results showing the influencing coefficient of all the 
factors. Compare with other machine learning algorithms, OLS excels in its ability to quantify the 
relationships of the factors and outcomes. 

Table 4. Contributing Parameters of Variables to Math Scores(OLS) 

OLS GENDER WKWHITE WKSESL RIRT MIRT S2KPUPRI P1EXPECT 

Coefficient 6.11 2.33 1.93 -0.03 1.19 5.50 0.43 

OLS P1FIRKDG P1AGEENT apprchT1 P1HSEVER chg14 avg_RIRT avg_MIRT 

Coefficient 12.02 -0.72 2.97 -2.97 0.54 0.11 -0.14 

OLS avg_SES avg_apprchT1 S2KMINOR P1FSTAMP ONEPARENT STEPPARENT P1NUMSIB 

Coefficient 3.04 -1.65 -0.57 -1.55 -1.32 -0.12 -0.09 

OLS P1HMAFB WKCAREPK P1EARLY wt_ounces C1FMOTOR C1GMOTOR P1HSCALE 

Coefficient 0.21 -1.11 0.04 0.04 1.69 -0.19 0.22 

OLS P1SADLON P1IMPULS P1ATTENI P1SOLVE P1PRONOU P1DISABL F5SPECS 

Coefficient 0.23 -0.15 -0.55 -0.86 -0.67 0.81 -7.08 

 
The table illustrates the highly influencing factors with high absolute values of the coefficients 

include whether the child go to public school, the child’s genders, whether the child receive special 
education services and whether the child is a first-time kindergartener. 

Except the factor of special education services that is negatively related to the math scores, the other 
three factors are all positively related to the output variables and the identity of first-time kindergartner 
contributes the most.  

Having found the outstanding influential factors and their relations with the final outcomes, let’s 
check those factors ’distribution in the controlled and exposed group respectively. 
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Table 5(a). Proportions of Public School 
Students in Controlled and Exposed Groups 

 

 

Table 5(b). Proportions of Male and Female 
Students in Controlled and Exposed Groups 
 

 

Table 5(c). Proportions of First-Time Kindergartner Students in Controlled and Exposed 

Groups 

 
 

Since all the influential factors are recorded by binary response, here we calculated the frequency of 

two categories of the answer{0,1} in the controlled and exposed group in order to distinguish the 
differences.  

For the factor of special education services causing decline of the score, apparently the exposed group 
are 100% receiving the services. The most influential factor which is the identity of first-time 
kindergartner has higher frequency among the controlled group than the exposed group, which also help 
explain why the controlled group performed better in the math test. Whereas, the other positively-related 
factors consisting of gender and public school turned out to be in favor of the exposed groups’ scores.  

Nevertheless, with the largest influential parameter of first-time kindergartner and isolation from 
treatment services, the controlled group still outperformed the exposed one. 

To dig and explore the more distinguished characteristics of the factors, Principle Components 
Analysis(PCA) is also adopted here on the whole datasets outputting continuous component variables. 
Applying Principle Components Analysis(PCA) on all the characteristics of individual including the 
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covariates and the exposure variable, we found out that 6 principle components accounted for 95% of 
all the components. 

Table 6. Constituting Parameters of Variables in PC1~PC6(PCA) 

Variables PC1 PC2 PC3 PC4 PC5 PC6 

GENDER 0.00  0.00  0.00  -0.06  -0.08  0.00  

WKWHITE 0.00  0.00  -0.02  -0.71  -0.59  0.01  

WKSESL 0.01  0.01  0.00  -0.06  0.00  0.00  

RIRT 0.00  -0.01  -0.04  0.47  -0.02  0.02  

MIRT 0.01  0.01  -0.01  -0.50  0.75  0.00  

S2KPUPRI 0.00  0.01  0.04  0.00  0.05  0.00  

P1EXPECT 0.00  0.01  0.00  0.09  -0.23  0.00  

P1FIRKDG -0.01  0.05  0.02  0.12  -0.13  -0.01  

P1AGEENT 0.05  0.02  0.00  -0.01  0.08  0.01  

apprchT1 -0.01  -0.01  -0.01  0.00  0.03  0.00  

P1HSEVER -0.02  0.16  0.03  -0.01  0.01  0.02  

chg14 0.01  0.00  -0.09  -0.01  0.01  0.01  

avg_RIRT -0.04  0.02  0.21  -0.01  -0.01  -0.02  

avg_MIRT 0.14  -0.03  -0.02  0.01  0.01  0.00  

avg_SES -0.14  -0.01  -0.03  -0.01  -0.01  0.02  

avg_apprchT1 -0.05  -0.02  -0.37  0.00  0.00  0.04  

S2KMINOR 0.10  0.04  0.75  0.00  -0.01  -0.11  

P1FSTAMP 0.19  -0.01  -0.27  0.00  0.01  -0.05  

ONEPARENT 0.31  -0.05  0.04  0.00  -0.01  0.00  

STEPPARENT -0.55  -0.06  0.06  0.00  0.02  -0.10  

P1NUMSIB 0.68  0.00  -0.03  0.01  -0.01  0.02  

P1HMAFB -0.17  0.26  -0.10  0.00  0.00  0.03  

WKCAREPK 0.05  -0.06  -0.19  0.00  0.00  -0.94  

P1EARLY -0.05  0.28  -0.07  0.00  0.00  -0.03  

wt_ounces 0.05  0.04  -0.11  0.00  0.00  0.05  

C1FMOTOR -0.03  -0.73  0.03  0.00  0.00  0.07  

C1GMOTOR -0.04  -0.41  0.03  0.00  0.00  -0.04  

P1HSCALE 0.02  -0.01  -0.01  0.00  0.00  -0.03  

P1SADLON 0.02  0.31  0.14  0.00  0.00  -0.09  

P1IMPULS 0.02  -0.03  0.26  0.00  0.00  -0.23  

P1ATTENI 0.00  -0.11  0.04  0.00  0.00  0.00  

P1SOLVE 0.05  0.00  -0.04  0.00  -0.01  0.10  

P1PRONOU 0.00  -0.06  0.01  0.00  0.00  -0.01  

P1DISABL 0.02  0.03  -0.02  0.00  0.00  0.08  

F5SPECS 0.00  -0.02  0.02  0.00  0.00  0.01  

 
The parameters of the principal components in the table shows that among all the features of the 

individuals, the group of factors about family context is embedded in the 6 components to the greatest 
extent followed by health, school composition and academic progressively. 
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All those components mainly indicates the variances of individuals. 

Table 7. Contributing Parameters of PC1~PC6 to Math Scores(OLS) 

OLS PC1 PC2 PC3 PC4 PC5 PC6 

Coefficient -2.53  -0.15  -0.15  -0.12  1.89  3.25  

 
Just like the way we had selected primary influencing factors before PCA, we utilized OLS for 

regression analysis and chose PC1,PC2 and PC6 with high absolute values of coefficients as our main 
investigated variables. The coefficient table reveals that PC5 and PC6 play significant role in enhancing 
the math scores while PC1 affects negatively.  

 

 
 

 

 

 
 

 
 
 
 

 
By comparing the distribution and the mean value of each group, we found that the controlled group 

has relatively higher values of PC5 and PC6 and lower value of PC1. The variations of all these three 
components contribute to greater outputs of the controlled group. The results derived from the projected 
data after PCA show more consistent and less antagonistic impact of the factors, which help verify the 
effectiveness of PCA adoption on our datasets.   

5.  Conclusion 

First, in terms of the standard deviation of the ITE, all the machine learning algorithms with 
comparatively low STD outperformed the traditional propensity score matching. Among those machine 
learning algorithms, KNN, BART and OLS excelled, offering much more stable calculations. 

Moreover, the values of ATE computed through all the methods turned out to be below zero. The 
results of factor analysis revealed that kids’ math scores has intensively positive relationships with the 
identity of first-time kindergartners and Kindergarten Math Scores  while strongly impaired by the 

Table 8(a). Histograms of PC1 of 
Controlled and Exposed Groups 

Table 8(b). Histograms of PC5 of Controlled 

and Exposed Groups 

Table 8(c). Histograms of PC6 of 

Controlled and Exposed Groups 
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Number of Siblings and Non-parental Pre-K Child Care. The controlled group boasted more first-time 
kindergartner and higher Kindergarten Math Scores with smaller Number of Siblings and less Non-
parental Pre-K Child Care, reasonably causing the greater performance in the math test scores. The 
machine learning algorithms learned that higher scores often appeared without the special treatment. 

Thus, special treatment effect led the trained model to predict lower scores, which finally caused the 
difference to be negative.  
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