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Abstract. This paper aims to evaluate the effectiveness of Multi-Armed Bandit (MAB) 

algorithms in choosing the optimal trading strategy among the sub optimal ones within financial 

markets. The research aims to addresses the challenge of adapting to dynamic market conditions. 

By introducing a Composite Trading Strategy that integrates trend-following, mean reversion, 

and momentum strategies, the study investigates whether increased trading frequency enhances 

the performance of profitability of various MAB algorithms, including UCB, Thompson 

Sampling, and epsilon-greedy. The experimental results indicate that while the introduction of 

complex strategies greatly improves returns in favorable market conditions, MAB algorithms 

still face limitations in adverse market environments. The findings highlight the potential of 

MAB algorithms in financial strategy selection and suggest directions for future research to 

enhance their adaptability in adverse markets. 

Keywords: Multi-Armed Bandit Algorithms, Algorithmic Trading Optimization, Financial 

Strategy Selection. 

1.  Introduction 

1.1.  Research Background 
Multi-Armed Bandit (MAB) algorithms have garnered increasing attention due to their effectiveness in 
addressing the exploration-exploitation trade-off in various decision-making scenarios. In financial 

markets, traders are constantly faced with the challenge of selecting the most profitable strategy in 
rapidly changing environments, which often involve significant uncertainty. The traditional trading 
strategies, although effective under certain conditions, typically lack the flexibility to adapt dynamically 
to these ever-changing market conditions, leading to suboptimal performance. 

MAB algorithms are well-suited to this context as they enable continuous learning and adaptation by 
exploring new strategies and exploiting known profitable ones. While there has been considerable 
research on the application of MAB algorithms in finance, most of it focuses on portfolio management 

and risk optimization. However, the application of MAB algorithms to real-time strategy selection in 
dynamic financial environments remains largely unexplored. 

This research aims to address this gap by investigating the use of MAB algorithms to optimize 
strategy selection in financial markets. Specifically, we introduce a Composite Trading Strategy that 
integrates trend-following, mean-reversion, and momentum strategies, designed to increase trading 
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opportunities and enable MAB algorithms to make more frequent and informed decisions. By testing 
various MAB algorithms such as Upper Confidence Bound (UCB), Thompson Sampling, and epsilon-
greedy, this study evaluates their effectiveness in different market conditions. 

1.2.  Research Objectives 

The main objective of this research is to evaluate the effectiveness of MAB algorithms in identifying 
and selecting the optimal trading strategy from a set of initially unclear options. Specifically, this study 
compares the performance of different MAB algorithms across two strategy combinations, including 
both simple and complex strategies. The introduction of the Composite Trading Strategy serves as a key 
experiment to test whether increasing the trading frequency can enhance the performance of MAB 

algorithms. 
This research seeks to answer the following key questions: 
1.Can MAB algorithms effectively identify and exploit the best strategies in a trading environment 

with low-frequency strategies? 
2.How does the introduction of the Composite Trading Strategy impact the performance of MAB 

algorithms compared to using all simpler, more traditional strategies? 

3.What are the implications of using MAB algorithms for real-world financial strategy selection, 
particularly in terms of maximizing returns? 

2.  Literature Review 

2.1.  Applications of Multi-Armed Bandit Algorithms in Finance 
MAB algorithms have been successfully applied in various areas of finance, primarily in portfolio 
selection and risk management. For instance, Shen et al. (2015) introduced MAB models in portfolio 
selection, demonstrating their utility in optimizing asset allocation under uncertain conditions [1]. 

Chanca (2022) extended this research by incorporating transaction costs into the decision-making 
process, emphasizing the need to account for real-world factors when applying MAB algorithms in 
financial markets [2]. 

Additionally, Huo and Fu (2017) developed a risk-aware MAB framework that focuses on balancing 
returns and risks in portfolio selection. Their research highlighted the importance of risk-awareness in 
financial decision-making, but their approach was limited to static market environments [3]. These 
studies have laid the foundation for the application of MAB algorithms in finance, but they are primarily 

concerned with optimizing long-term investment decisions rather than real-time strategy selection. 
Recent advancements have further explored MAB algorithms in more complex market environments. 

De Curtò et al. (2023) proposed an integration of MAB algorithms with large language models (LLMs) 
to improve decision-making in non-stationary markets, highlighting the adaptability of these algorithms 
in changing environments [4]. Meanwhile, Cannelli et al. and Zhu et al. studied the benefits of adding 
multiple trading strategies to the MAB framework, and found that such combinations can boost returns, 
albeit with increased complexity and computational demands [5, 6]. Additionally, Bernasconi et al. 
explored strategies for dark-pool smart order routing, showing the potential of MAB algorithms in 

handling complex market order flows, especially in non-public market environments [7]. Liu and 
Cartlidge studied nonstationary continuum-armed bandit strategies and examined the performance of 
MAB algorithms in terms of dynamic adaptability [8]. 

However, these studies do not focus on the dynamic selection of trading strategies in real-time, a 
crucial element for optimizing decision-making in high-frequency trading. 

2.2.  Limitations of Existing Research 

Despite the progress made in applying MAB algorithms to portfolio optimization and risk management, 
several limitations remain. First, most existing research focuses on long-term investment decisions and 
static market conditions, which do not reflect the fast-paced nature of financial trading environments 
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where strategies need to adapt in real-time. This limits the applicability of these studies to high-
frequency trading, where decision-making must be quick and responsive to changing market conditions. 

Second, while MAB algorithms have been effective in portfolio selection, they have not been 
extensively studied in the context of strategy selection. Most of the existing literature treats strategies as 

fixed and focuses on optimizing the selection of assets within a portfolio. However, financial markets 
are dynamic, and the effectiveness of a strategy can vary significantly based on market conditions. The 
lack of research on applying MAB algorithms to dynamically select and switch between strategies in 
response to changing market signals represents a significant gap. 

Lastly, many studies incorporate MAB algorithms without fully addressing the computational 
complexity involved in applying these algorithms in real-time trading environments. The integration of 
multiple strategies into a composite framework, which allows for more frequent and diverse trading 
signals, adds complexity to the decision-making process. Yet, little research has explored how MAB 

algorithms handle this increased complexity in high-frequency trading environments. 

2.3.  Research Gap and Novelty 
To the best of our knowledge, no existing studies have applied MAB algorithms specifically for real-
time strategy selection in financial markets. This represents a major gap in the literature, as the ability 

to dynamically switch between different trading strategies in response to changing market conditions is 
crucial for optimizing trading performance. 

This research addresses that gap by introducing a novel application of MAB algorithms for strategy 
selection. The proposed Composite Trading Strategy combines trend-following, mean-reversion, and 
momentum strategies, which allows for more frequent trading opportunities and better optimization of 
decision-making under varying market conditions. By evaluating the performance of several MAB 
algorithms across different market scenarios, this study not only expands the application of MAB 
algorithms in finance but also provides insights into their adaptability in high-frequency trading 

environments. 
The novelty of this research lies in its focus on strategy selection rather than portfolio optimization, 

providing a new perspective on how MAB algorithms can be used to dynamically respond to market 
fluctuations. This approach has the potential to significantly improve trading outcomes by allowing for 
more flexible and adaptive decision-making processes. 

3.  Methodology 

3.1.  Overview of Multi-Armed Bandit (MAB) Algorithms 
This section provides an overview of the Multi-Armed Bandit (MAB) algorithms utilized in this study. 
These algorithms are designed to tackle the exploration-exploitation trade-off, where a balance must be 
struck between trying out new strategies (exploration) and using the strategies that have performed well 

in the past (exploitation). The following MAB algorithms were selected for their effectiveness in various 
decision-making scenarios and their potential applicability in financial markets. 

3.1.1.  UCB Algorithm 
The Upper Confidence Bound (UCB) algorithm is a widely used approach in the MAB problem. It 
selects strategies based on both the average observed rewards and the uncertainty associated with those 

rewards. The UCB algorithm calculates an upper confidence bound for each strategy, and the strategy 
with the highest bound is chosen. This method inherently balances exploration and exploitation by 
favoring strategies that either have high observed rewards or have been less frequently tried, thus having 
higher uncertainty. 

The UCB value for each strategy 𝑖 at time 𝑡 is given by: 

𝑈𝐶𝐵𝑖(𝑡) = 𝜇𝑖(𝑡) + 𝑐√
2ln𝑡

𝑛𝑖(𝑡)
                                                            (1) 

where: 
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• 𝜇𝑖(𝑡) is the average reward for strategy 𝑖 up to time 𝑡. 
• 𝑛𝑖(𝑡) is the number of times strategy 𝑖 has been selected up to time 𝑡. 
• 𝑐 is a parameter that controls the degree of exploration. 

3.1.2.  SW-UCB Algorithm 

The Sliding Window UCB (SW-UCB) algorithm is an adaptation of the UCB algorithm designed to 
respond more effectively in environments where recent rewards may be more relevant than older ones. 
Instead of considering all past rewards, SW-UCB uses a sliding window to focus on the most recent 
rewards. This allows the algorithm to adapt more quickly to changes by giving more weight to recent 
data. 

The SW-UCB value for each strategy 𝑖 at time 𝑡 is calculated similarly to the UCB algorithm, but 

only includes the rewards and counts within a fixed sliding window 𝑊: 

𝑆𝑊𝑈𝐶𝐵𝑖(𝑡)
= 𝜇𝑖

𝑊(𝑡) + 𝑐√
2ln𝑡

𝑛𝑖
𝑊(𝑡)

                                                            (2) 

where 𝑊 is the size of the sliding window. 

3.1.3.  EWMA-UCB Algorithm 
The Exponentially Weighted Moving Average UCB (EWMA-UCB) algorithm is another variant of 
UCB, tailored to scenarios where more recent rewards should be given greater importance. This 
algorithm applies an exponentially decreasing weight to past observations, placing more emphasis on 

recent rewards. This approach helps the algorithm adapt to shifts in strategy performance more quickly 
than the standard UCB. 

The EWMA-UCB value is given by: 

𝐸𝑊𝑀𝐴𝑈𝐶𝐵𝑖(𝑡) = 𝜇𝑖
𝜆(𝑡) + 𝑐√

2ln𝑡

𝑛𝑖
𝜆(𝑡)

                                                              (3) 

where 𝜆 is the decay factor that controls how quickly the weight of past observations diminishes. 

3.1.4.  Thompson Sampling (TS) Algorithm 

Thompson Sampling is a Bayesian approach to the MAB problem, where the probability of selecting a 
strategy is proportional to the probability that it is the best option. For each strategy, a posterior 
distribution of the expected reward is maintained and updated after each trial. The strategy with the 
highest sampled reward from its posterior distribution is selected. This method inherently balances 
exploration and exploitation according to the uncertainty in the reward estimates. 

3.1.5.  Epsilon-Greedy Algorithm 
The epsilon-greedy algorithm is a simple yet effective approach for balancing exploration and 

exploitation. With a small probability 𝜖, the algorithm explores by randomly selecting a strategy, and 

with probability 1− 𝜖 , it exploits by selecting the strategy with the highest estimated reward. This 
method is straightforward to implement and can perform well in a variety of settings, although it may 
not be as efficient as more sophisticated algorithms like UCB or Thompson Sampling, particularly in 
environments where optimal strategies need to be identified quickly. 

3.2.  Strategy Design 

This section explores trading strategies ranging from simple, traditional methods to more advanced 
approaches, setting the stage for an in-depth examination of Multi-Armed Bandit (MAB) algorithms in 
different trading environments. 

3.2.1.  Initial Strategy Set 

The initial strategy set comprises simple, well-known trading strategies that serve as a baseline for 
evaluating the performance of MAB algorithms. These strategies are selected for their simplicity and 
widespread use in various trading systems. They include: 
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• SMA Crossover: A trend-following strategy that generates a buy signal when a short-term Simple 
Moving Average (SMA) crosses above a long-term SMA, and a sell signal when the short-term 
SMA crosses below the long-term SMA. 

• RSI Strategy: A momentum-based strategy that uses the Relative Strength Index (RSI) to identify 

overbought and oversold conditions. The strategy generates buy signals when the RSI falls below 
a certain threshold (indicating the asset is oversold) and sell signals when the RSI exceeds a certain 
threshold (indicating the asset is overbought). 

• Bollinger Bands: A volatility-based strategy that uses Bollinger Bands to identify price extremes. 
The strategy generates buy signals when the price touches the lower band and sell signals when 
the price touches the upper band. 

These strategies, while effective in certain market conditions, often result in low trading frequencies 
due to their reliance on specific market signals, making them ideal candidates for testing the limitations 

of MAB algorithms. 

3.2.2.  Composite Trading Strategy 
To address the limitations observed with low-frequency trading strategies, the Composite Trading 
Strategy was introduced. This strategy is designed to increase trading frequency by integrating multiple 

trading approaches into a single strategy. Specifically, the Composite Trading Strategy combines 
elements of trend-following, mean reversion, and momentum strategies, allowing it to generate more 
frequent trading signals across various market conditions. 
• Trend-Following Strategy: Moving Average Crossover 

– This component generates buy signals when a short-term SMA crosses above a long-term 
SMA, indicating a potential upward trend, and vice versa for sell signals. 

• Mean Reversion Strategy: Bollinger Bands 
– This component generates buy signals when the current price approaches the lower 

Bollinger Band, anticipating a price rebound, and sell signals when the price approaches 
the upper Bollinger Band, anticipating a price correction. 

• Momentum Strategy: RSI Filter 
– The momentum component uses the RSI to filter signals, generating sell signals when the 

RSI exceeds 70 (indicating overbought conditions) and buy signals when the RSI falls 
below 30 (indicating oversold conditions). 

While MAB algorithms offer a dynamic approach to strategy selection, their performance may be 

limited when applied to simple trading strategies with low trading frequency. These simple strategies, 
triggered by single conditions, may not generate enough trading opportunities, thus restricting the MAB 
algorithms' ability to efficiently explore and exploit the strategy space. To address this limitation, this 
study introduces a more complex trading strategy—the Composite Trading Strategy. By integrating 
elements of trend-following, mean reversion, and momentum strategies, this Composite Strategy aims 
to increase trading activity, providing MAB algorithms with more opportunities to optimize decision-
making. 

The Composite Trading Strategy is expected to subject the MAB algorithms to more rigorous testing 

by increasing the number of trading opportunities, thereby enabling the algorithms to better demonstrate 
their optimization capabilities. In this way, not only can the adaptability of MAB algorithms be validated 
across diverse market conditions, but their performance limits when faced with complex strategies can 
also be explored, ultimately advancing their broader application in real-world financial markets. 

3.3.  Application of MAB Algorithms in Financial Markets 

MAB algorithms offer several advantages when applied to strategy selection in financial markets. Their 
ability to dynamically balance exploration and exploitation makes them well-suited for environments 
where quick adaptation to market changes is critical. By leveraging real-time data and continuously 
updating their strategy selections, MAB algorithms have the potential to outperform static strategies that 
rely solely on historical performance. 
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4.  Experimental Design 

This chapter outlines the design of the experiments conducted to evaluate the performance of Multi-
Armed Bandit (MAB) algorithms in selecting optimal trading strategies. The experiments were designed 
to test the algorithms across various strategy combinations, including both simple strategies and the 

more complex Composite Trading Strategy. The experiments aim to assess how effectively these 
algorithms can identify and exploit the best strategies to maximize returns. 

4.1.  Data Source Selection 
To create a controlled environment for testing, simulated market data were generated using a Geometric 
Brownian Motion (GBM) model[9-11]. The GBM model is commonly used in financial modeling to 

simulate the random behavior of asset prices over time. The key parameters for the GBM model, such 
as drift (μ), volatility (σ), and the initial price, were varied across different simulations to create datasets 
with different market characteristics, including varying levels of volatility and trend direction. 

The use of simulated data enables for the testing of MAB algorithms in a controlled setting where 
the underlying market behavior is known. This is particularly useful for evaluating how well the 
algorithms can adapt to different market conditions and whether they can successfully identify profitable 
strategies. 

4.2.  Experimental Procedures 
The experiments were designed to compare the performance of MAB algorithms when applied to both 
simple and complex trading strategies. The procedures were structured to observe how each algorithm 
balances exploration and exploitation and how effectively it can optimize strategy selection in different 
environments. 

4.2.1.  Baseline Experiment 
In the baseline experiment, the MAB algorithms were tested using the initial set of simple trading 
strategies. These strategies, which include SMA Crossover, RSI Strategy, and Bollinger Bands, were 
chosen for their simplicity and because they represent commonly used techniques in trading. 
• Procedure: 

– Each MAB algorithm was initialized with equal probabilities assigned to each strategy. 
– Over multiple trading periods, the algorithms selected strategies based on their respective 

decision rules (e.g., UCB, Thompson Sampling). 
– The performance of each strategy was tracked in terms of cumulative regret, final returns, 

and strategy selection frequency. 
– The baseline experiment was repeated multiple times (at least 8 iterations) with different 

market data scenarios to ensure the robustness of the results. 
• Objective: The objective was to establish a benchmark for the algorithms' performance when 

applied to simple strategies and to identify any limitations related to low trading frequency or 
insufficient exploration opportunities. 

4.2.2.  Composite Strategy Introduction Experiment 
The second set of experiments introduced the Composite Trading Strategy into the pool of available 
strategies. This strategy was designed to generate more frequent trading signals by integrating multiple 

trading techniques (trend-following, mean reversion, and momentum). The purpose of these 
experiments was to determine whether the increased trading activity provided by the Composite Strategy 
would enhance the MAB algorithms' ability to optimize strategy selection. 
• Procedure: 

– The Composite Trading Strategy was added to the existing pool of simple strategies. 
– The same MAB algorithms were run under similar market conditions as in the baseline 

experiment, with the addition of the Composite Strategy as an option. 
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– The algorithms' performance was again tracked over multiple trading periods, focusing on 
cumulative regret, final returns, and the frequency of strategy selection. 

– These experiments were also repeated multiple times (at least 8 iterations) to ensure 
consistency and reliability of the results. 

• Objective: To evaluate whether the introduction of a more active trading strategy would improve 
the overall performance of the MAB algorithms, particularly in terms of increasing returns and 
reducing cumulative regret. 

4.3.  Evaluation Metrics 
To assess the performance of the MAB algorithms, several key metrics were used. These metrics provide 

a comprehensive view of how well each algorithm performed in terms of strategy optimization and 
overall profitability. 

4.3.1.  Cumulative Regret 
Cumulative regret is a standard measure in MAB problems that quantifies the difference between the 
actual returns obtained by the algorithm and the returns that would have been obtained by always 

choosing the best possible strategy. Lower cumulative regret indicates better performance, as it means 
the algorithm has made fewer suboptimal choices. 
• Calculation: For each algorithm and strategy combination, cumulative regret was calculated at 

each time step and then summed over the entire trading period. 

4.3.2.  Strategy Selection Frequency 

This metric tracks how often each strategy was selected by the MAB algorithm over the course of the 
experiment. It provides insights into the algorithm's behavior—whether it is heavily exploring (trying 
out different strategies) or exploiting (sticking with a known profitable strategy). 
• Analysis: By examining the selection frequency, we can assess whether the algorithm is biased 

toward certain strategies and how this affects overall performance. 

4.3.3.  Final Returns 

Final returns measure the total profit generated by the algorithm at the end of the trading period. This 
metric is crucial for evaluating the practical success of the strategy selection process, as it directly 
reflects the profitability of the chosen strategies. 
• Comparison: Final returns were compared across different algorithms and strategy sets to 

determine which combinations yielded the highest profits. 

5.  Experimental Results 

This section analyzes the performance of MAB algorithms across diverse market scenarios using simple 
and complex trading strategies. We begin by assessing basic strategies like SMA Crossover, RSI, and 
Bollinger Bands through key metrics such as cumulative regret and final returns, then explore the 
enhanced effectiveness of composite strategies in varied market conditions. 

5.1.  Results of the Initial Strategy Set 

• Cumulative Regret: Present the performance of MAB algorithms in the simple strategy set, 
including selection frequency and final returns. 

• Final Returns: Analyze the profitability of MAB algorithms in the initial strategy set, particularly 
whether they can identify relatively superior strategies. 
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Figure 1. Performance in a down trend market. 

 

Figure 2. Performance in a up trend market. 
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Figure 3. Performance in a range-bound market. 

As Figure 1 shows, none of the algorithms achieved profitability, and the cumulative regret increased 

exponentially across all of them. 
As Figure 2 shows, all algorithms except SW-UCB were able to achieve profitability. 
As Figure 3 shows, EWMA_UCB and SW_UCB incurred losses, and their regret slopes were 

significantly steeper than those of the other MAB algorithms, indicating that the RSI strategy, which 
they selected most frequently, performed poorly in this context. 

Table 1. Eight experiments were conducted for each type of market, with the profitability of each 

algorithm summarized in the table below 

MAB 
algorithm 

count of profitable times 

up trend Down trend Range-bound 

UCB 8 1 3 

TS 7 1 3 

Epsilon greedy 7 1 4 

EWMA UCB 6 2 4 

SW UCB 6 2 4 

 
Table 1 shows that the Initial Strategy Set tends to generate relatively stable profits in uptrend 

markets. However, in range-bound markets, the profitability is less consistent, and in downtrend markets, 
it is difficult to achieve any profits. 

5.2.  Results of the Complex Strategy Introduction Experiment 
• Return Comparison: Present the significant improvement in returns after introducing complex 

strategies and compare with the initial strategy set. 

• Cumulative Regret Changes: Analyze whether the cumulative regret of MAB algorithms 
significantly decreases after the introduction of complex strategies, indicating that the algorithm 
effectively identified and exploited the advantages of the complex strategies. 
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• Strategy Selection Frequency: Show whether MAB algorithms increasingly selected complex 
strategies after their introduction. 

 

Figure 4. In this case simply justify the caption so that it is as the same width as the graphic. 

 

Figure 5. In this case simply justify the caption so that it is as the same width as the graphic. 

Figure 4 and figure 5 are the same experiment, but for better visualization, figure 5 do not draw 
Thompson Sampling. 

Figures 4 and 5 show that all strategies were very profitable in up trend market, with Thompson 
Sampling and Epsilon Greedy achieving the highest profits. However, due to their randomness, they 
also exhibited significant variation in profits across repeated experiments. 
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Table 2. Eight experiments were conducted for each type of market, with the profitability of each 

algorithm summarized in the table below 

MAB 
Algorithm 

count of profitable times 

up trend Down trend Range-bound 

UCB 8 1 3 

TS 7 1 3 

Epsilon greedy 7 1 4 

EWMA UCB 6 2 4 

SW UCB 6 2 4 

 
Table 2 indicates that even with the introduction of a better-performing, higher-frequency Composite 

Strategy, there was no significant improvement in the profitability of MAB algorithms in adverse market 
conditions. 

5.3.  Comparison Experiment Results 
These comparison experiments were designed to evaluate how the Composite Trading Strategy impacts 
MAB algorithm performance across different market conditions, focusing on returns and strategy 
selection frequency. The following sections detail the experiment setup and results. 

5.3.1.  Overview of Experiment Setup 

This section presents the results of the comparison experiments, designed to evaluate the impact of 
introducing the Composite Trading Strategy on the performance of various MAB algorithms under 
different market conditions. The focus is on comparing the changes in returns and strategy selection 
frequency between the simple strategy group and the complex strategy group. 

5.3.2.  Comparison of Returns 

In the simple strategy group, the algorithms were only able to achieve a high probability of profit in 
uptrend markets. In contrast, in downtrend and range-bound markets, they generally failed to generate 
profits in most instances. However, in the complex strategy group, the number of profitable trades was 
roughly the same across different market conditions. While the frequency of profitable trades was 
consistent, the magnitude of profits increased, particularly in uptrend markets. 

Specifically, the Thompson Sampling (TS) and epsilon-greedy algorithms showed greater 
profitability after the introduction of the complex strategy. TS had the highest average returns, but it 
also exhibited a large standard deviation in its returns, indicating significant variability in its 
performance across different market conditions. The epsilon-greedy algorithm also performed well, with 
slightly lower average returns and standard deviation compared to TS. 

5.3.3.  Analysis of Strategy Selection Frequency 

In terms of strategy selection, MAB algorithms in the simple strategy group were more inclined to 
choose higher-yielding strategies in uptrend markets, while in other market conditions, their strategy 
selection was more dispersed, with no clear advantage. After introducing the Composite Strategy, which 
integrates multiple trading approaches, the frequency of strategy selection became more balanced across 
different market conditions. This composite strategy increased trading frequency and improved 
profitability, particularly in uptrend markets, by providing a more diverse set of opportunities for the 

algorithms to exploit. 
However, while the Composite Strategy demonstrated its strengths by enhancing trading frequency 

and returns in favorable market conditions, its limitations became apparent in adverse market conditions 
such as downtrends or range-bound markets. The MAB algorithms' performance in these unfavorable 
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environments remained constrained, with no significant improvement in profitability, despite the 
increased trading opportunities offered by the composite approach. 

This analysis suggests that while the Composite Strategy can optimize performance under certain 
market conditions, merely increasing trading frequency and diversifying strategies is not sufficient to 

overcome the inherent limitations of MAB algorithms in more challenging market environments. 
Further refinement of strategy design and adaptability is necessary to address these challenges 
effectively. 

5.3.4.  Summary of Findings 
The comparison experiment results indicate that the introduction of the Composite Trading Strategy 

somewhat improved the profitability of MAB algorithms, particularly in uptrend markets. However, this 
improvement was mainly reflected in increased returns, while the performance of MAB algorithms 
under unfavorable market conditions (such as market downtrends or range-bound conditions) did not 
significantly improve. Although the Composite Strategy led to a more balanced strategy selection across 
different market conditions, it did not fully address the challenges faced by the algorithms in complex 
market environments. 

These findings suggest that while the Composite Strategy increases trading opportunities and 

provides richer market signals, MAB algorithms still face limitations in dealing with adverse market 
conditions. This highlights the need for future research to further consider the diversity of market 
conditions and the adaptability of algorithms when designing strategies and optimizing their 
performance. 

6.  Conclusion 

This study explored the application of Multi-Armed Bandit (MAB) algorithms in the dynamic selection 
of trading strategies within financial markets, a novel application that has not been addressed in existing 
literature. By introducing the Composite Trading Strategy, which integrates trend-following, mean-
reversion, and momentum strategies, this research demonstrated how MAB algorithms can enhance 
decision-making in high-frequency trading environments. 

The experimental results indicate that MAB algorithms such as Upper Confidence Bound (UCB), 
Thompson Sampling, and epsilon-greedy are effective in identifying optimal strategies under certain 
market conditions. In particular, the introduction of the Composite Trading Strategy led to increased 

trading opportunities, which enabled the algorithms to more effectively balance exploration and 
exploitation. However, the performance of these algorithms in adverse market conditions, such as 
downtrends or range-bound markets, remains limited. While the Composite Strategy improved 
profitability in favorable conditions, it did not fully overcome the inherent challenges faced by MAB 
algorithms in more complex and volatile market environments. 

The primary contribution of this research is the application of MAB algorithms to real-time strategy 
selection, a field where these algorithms have not been previously explored. This study demonstrates 

that MAB algorithms can be applied beyond traditional portfolio optimization and risk management, 
offering new possibilities for improving trading performance in real-world financial markets. 

Despite these findings, there are several limitations to this study. First, the experiments were 
conducted using simulated market data, which, while useful for controlled testing, may not fully capture 
the complexity and unpredictability of real-world financial markets. Second, the increased 
computational complexity introduced by the Composite Trading Strategy poses challenges for real-time 
application, especially in high-frequency trading scenarios where rapid decision-making is critical. 

Future research should focus on further refining MAB algorithms to enhance their adaptability in 
adverse market conditions. One promising direction could involve integrating predictive models that 
can better anticipate market shifts, allowing the algorithms to make more context-aware decisions. 
Additionally, exploring the combination of MAB algorithms with machine learning techniques, such as 
reinforcement learning, could offer new avenues for improving decision-making under uncertainty. This 
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would not only address the challenges of strategy selection but also expand the practical applicability of 
MAB algorithms in increasingly complex financial markets. 

In conclusion, this study has highlighted both the potential and limitations of MAB algorithms in 
financial strategy selection, underscoring the need for continued research to fully harness their 

capabilities in dynamic and uncertain trading environments. 
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