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Abstract. The purpose of this study is to investigate the effectiveness of using Multi armed 

bandit model, which contains ϵ -greedy, Upper Confidence Bound (UCB), and Thompson 

sampling algorithms, to optimize online advertisement placement. Through simulating different 

types of ad placements using different algorithms and comparing them, this paper intends to 
demonstrate the feasibility of the Multi-Armed Robber model for the ad placement problem. The 

results show that the multi-armed bandit model can improve the ad click rate compared with the 

traditional ad placement strategy. Thompson sampling algorithm outperforms the ϵ -greedy 

algorithm and UCB algorithm in this paper's experiments, which can better balance exploration 

and application and reduce regret. The algorithm provides a more efficient method of allocating 

ad resources. These findings provide new insights into the field of digital marketing and may 

have an impact on the development of actual ad placement strategies. 

Keyword: Ad Placement, Multi armed bandit, Thompson Sampling, ϵ -greedy, Upper 

Confidence Bound. 

1.  Introduction 

Traditional media (also known as “old media”) such as television, radio, newspapers and magazines 
have been used for marketing purposes for decades. While these mediums are still a common way to 

reach customers and other companies, new media are significantly changing the way people access 

information as the number of Internet users worldwide reaches 5.35 billion by 2024, with the average 
user spending 6.5 hours a day online [1]. The rapid rise of new media forms such as online advertising, 

online news and social media has greatly expanded the breadth and depth of information dissemination. 

However, users are faced with an extremely large amount of information every day, which often leads 

to information overload, making it difficult for advertisements to effectively reach the target audience 
[1]. 

To address this challenge, traditional online ad delivery methods, such as rule-based systems and 

simple A/B testing, have gradually shown their limitations. For example, Auer, Cesa-Bianchi, and 
Fischer pointed out in their study that these methods often lead to suboptimal resource allocation and 

delayed assessment of ad effectiveness due to their inability to dynamically adapt to changes in user 

behavior and preferences [2]. To solve these problems, researchers proposed Multi-Armed Bandit (MAB) 
algorithm as an effective optimization tool. 

Geng, Lin and Nair experimentally investigated the application of the MAB algorithm in target 

advertising audience evaluation, and the results showed that the algorithm significantly improved the 
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click-through rate and conversion rate of the advertisements [3]. In addition, Hu et al. explored the 

performance of the MAB algorithm in dealing with the mean-variance setting, emphasizing the 

advantages of this algorithm in dealing with uncertainty and optimal resource allocation[4].Auer, Cesa-

Bianchi and Fischer further investigated the application of the MAB algorithm in display ad optimization, 
noting that this algorithm can significantly improve ads by updating user data in real time to significantly 

improve ad effectiveness [5]. 

Cesa-Bianchi, Gentile and Zappella showed that the application of MAB algorithm in real-time 
bidding and ad targeting can effectively balance the relationship between exploring new strategies and 

utilizing known strategies in a dynamic environment, thus optimizing the allocation of advertising 

resources [6, 7].Jiang, on the other hand, explored the MAB model in personalized online advertising, 

revealing the advantages of the algorithm in handling high-dimensional user data and coping with 
dynamic user engagement, which is important for the accuracy and effect optimization of advertisement 

placement [8]. 

However, despite these studies demonstrating the long-term benefits of the MAB algorithm, the 
existing literature still lacks a systematic comparison of its performance at the initial stage of ad delivery. 

For example, Zhou pointed out that although the ε-greedy algorithm is widely used due to its simplicity, 

a fixed exploration rate may lead to poor performance in the long run when faced with rapidly changing 
environments [9]. Zhou et al.  showed that the UCB algorithm is able to better adapt to changes in 

advertisement effectiveness without the need for a preset exploration rate, but its computational 

complexity is high, especially sensitive to the initial parameters [10]. In contrast, the Thompson 

sampling algorithm can more accurately handle uncertainty and adapt to dynamic environments by 
sampling from posterior probability distributions, but Jiang and Shabalina pointed out that this method 

is computationally burdensome when accurate estimation of the posterior distribution is required [11]. 

To address this research gap, this study aims to compare the performance of ϵ-greedy, UCB, and 
Thompson sampling methods in the initial stages of advertisement placement through simulation. 

Through these comparisons, advertisers are able to reduce the decision-making risk and optimize the 

click-through rate and conversion rate of advertisements in the early stages of ad placement, thus 

improving the ROI of advertisements [12]. 
The aim of this study is to explore the application of dobby slot machine algorithms in online ad 

placement, especially the comparison of ϵ-greedy, UCB and Thompson sampling methods. By 

simulating an ad placement scenario, we will analyze in detail the performance of these algorithms at 
the initial stage of ad placement. The research methodology includes ad placement simulations using 

real datasets and a series of experiments to compare the effectiveness of the three algorithms. Our goal 

is to reveal which algorithm can better balance exploration and utilization in different ad placement 
scenarios, so as to provide effective decision support for advertisers [10-12]. 

2.  Methodology 

This section will define the ad placement problem and discuss the issues that would arise in that scenario. 

It will also introduce the three algorithms of multi-armed bandit, discuss their advantages and 
disadvantages, and how to solve the problems encountered in the advertisement placement scenario. 

2.1.  Definition of ad placement 

Advertising placement is a business strategy that aims to increase awareness and sales of a product or 
service by attracting potential customers through targeted advertising content. In the digital advertising 

space, the problem is particularly complex because advertisers need to maximize their return on 

investment by showing the most appropriate ads to the right audience at the right time within a limited 
budget. There are three main challenges to this problem, which are as follows  

1. Variety of advertising choices: Advertisers usually have multiple advertising choices, each with 

different potential returns and costs. The central question in this challenge is which ads to choose to 

maximize returns and minimize costs.  
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2. Uncertainty in user behavior: There is a high degree of uncertainty as to whether a user will click 

on an advertisement or interact with its content. The central question is how to increase the probability 

of users clicking on the ads, i.e., CTR, and the probability of users interacting with the ads, i.e., 

conversion rate.  
3. Dynamic market conditions: The multidimensionality, diversity and rapidity of the market 

environment and user preferences require advertisements to be able to shift and adjust quickly according 

to changes in the market and users.  
Therefore, the problem of how to effectively manage advertising resources, i.e., selecting the best 

combination of advertisements from a large number of possible advertisements to maximize the 

achievement of a specific objective (e.g., click-through rate, conversion rate, or ad revenue), is faced by 

online advertisement placement. In previous studies, there are many approaches to optimize online 
advertisement placement, among which especially multi-arm bandit models and machine learning. In 

the study of Jiang, C., & Shabalina, O. it was shown how these algorithms can optimize the ad placement 

strategy, especially to improve the effectiveness and ROI of the ads in the face of uncertainty [10]. In a 
study by Kong, S. T. the application of dobby slot machine algorithms combined with machine learning 

in advertising campaigns is discussed [11]. In a study by Jiang, C. it was shown that MAB algorithms 

can effectively improve the click-through rate and conversion rate of advertisements, especially in the 
rapidly changing online advertising market [12]. But on the other hand, the risk and cost of advertisers 

in the initial stage of placing ads is great. Therefore, the goal of this paper is to optimize the click-

through rate at the initial stage of online advertisement placement. 

2.2.  Multi armed bandit 
The multi-armed bandit (MAB) problem is a decision model for maximizing reward or optimizing 

outcomes in the presence of multiple options. In the MAB problem, the decision maker chooses between 

multiple options (or “arms”), each with an unknown probability distribution representing the probability 
of obtaining a reward. 

The central challenge of the MAB model is to balance the two strategies of “exploration” and 

“exploitation”:  

- Exploration phase: Attempts to obtain information about each option by selecting different options, 
so as to know which options are likely to deliver the best rewards. 

- Exploitation phase: Based on the information gained, the arm with the known higher return is 

selected to maximize the total return.  
For online ad placement problems, the Multi-Arm Bandit (MAB) model provides an efficient 

solution because it directly optimizes the core challenges in ad placement. For example, dynamic 

decision support, balanced exploration and utilization, budget efficiency maximization, simplification 
of complex decision-making processes, and real-time feedback utilization can better adapt to the 

dynamic changes in the advertising market and improve the precise targeting of advertisements in the 

ad placement problem [6]. And several studies have shown the effectiveness of MAB algorithms in 

improving the click rate and conversion rate of advertisements as well as the potential to optimize 
resource allocation in dynamic advertising environments, and MAB algorithms are able to be effective 

in dynamic bidding environments that can effectively bid on advertisements and allocate resources 

[1,2,3,5]. In addition to this, Contextual Bandit algorithm provides a new approach that can significantly 
improve the relevance and user engagement of advertisements [4]. And for complex markets and 

multidimensional users, the MAB model excels in handling high-dimensional user data and dynamic 

user engagement [7]. 

2.3.  ϵ -Greedy  

ϵ -Greedy is a straightforward multi-armed bandit strategy that centers on a trade-off between 

exploration and exploitation. The strategy is controlled by the parameter ϵ. The main feature of the ϵ -

Greedy strategy is that it is simple to implement and easy to understand, but its difficulty lies in choosing 
an appropriate value of ϵ to balance the efficiency of exploration and exploitation. Too high a value of 
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ϵ may lead to too much ineffective exploration, while too low a value of ϵ may lead to prematurely 

ignoring potentially better choices. In addition, since the exploration rate is fixed, the algorithm performs 

poorly in dealing with rapidly changing market environments, which may lead to unsatisfactory results 

in the long run. In dynamic environments, this fixed strategy may lead to sub-optimal resource allocation 
[8]. 

 

Pseudocode:  
1.  for t = 1, 2, 3, ... do 

2.      # Exploration vs. Exploitation decision 

3.      Generate r ~ U(0, 1) 

4.      if r > ε then 
5.          # Exploitation step: select the arm with the highest estimated reward 

6.          A_t ← argmax(Q_k) for k = 1, ..., K 

7.      else 
8.          # Exploration step: select a random arm 

9.          A_t ← random choice from {1, 2, ..., K} 

10.     end if 
11.     # Pull the selected arm and observe the reward 

12.     r_t ← reward from pulling arm A_t 

13.     # Update the estimated reward for the selected arm 

14.     N[A_t] ← N[A_t] + 1 
15.     Q[A_t] ← Q[A_t] + (1 / N[A_t]) * (r_t - Q[A_t]) 

16. end for 

 
r is from the uniform distribution 𝑈(0,1) in which a random number is generated to decide whether 

to explore or not. 

ε is the exploration rate, if the random number r is greater than ε, the current optimal arm is selected 

for utilization, otherwise an arm is randomly selected for exploration. 
A_t is the arm selected at time step t. 

r_t is the reward received from arm A_t. 

Q[A_t] is the expected reward estimate for the updated arm A_t. 

2.4.  Upper Confidence Bound (UCB)  

The upper confidence interval (UCB) strategy is a method of making decisions based on the upper 

confidence interval. For each selection, UCB considers the average gain for each arm and the uncertainty 
of selecting that arm (usually based on the number of times that arm has already been selected), and then 

selects the arm with the highest upper confidence interval limit.The main advantage of UCB is that it 

balances exploration and exploitation in a systematic way, automatically adjusting the intensity of 

exploration by taking into account the uncertainty of each arm. This makes UCB very effective in 
applications where the overall number of trials needs to be minimized in order to quickly converge to 

the optimal selection, but it is more computationally complex than Epsilon-Greedy and may be too 

aggressive for arms with high volatility returns. In a study by Jin Zhou (2024) it is shown that UCB is 
better able to adapt to changes in advertising effectiveness without the need for a preset exploration rate, 

and it performs especially well in the face of volatile markets. However, it is more sensitive to initial 

parameters [8]. 
In UCB we select the arm by this formula: 

𝐴𝑡 = argmax
𝑎

(𝑋𝑎 + √
2 log 𝑡

𝑁𝑎
) (1)  

At: This is the action or "arm" chosen at time t. It represents the decision made by the algorithm 
about which arm to pull based on the calculated upper confidence bounds. 
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Xa: This is the average reward obtained from arm a up to time t. It measures the effectiveness of the 

arm based on past performances. 

Na: This is the number of times arm a has been selected up to time t. This count is used to ensure that 

all arms are sufficiently explored. 

√
2 log t

Na
: This term represents the uncertainty or the confidence interval for arm a. It ensures that arms 

that have not been explored as much as others are given a chance to prove their potential. The uncertainty 

decreases as Na increases, meaning the more an arm is tested, the more precise its estimated value 

becomes 

Pseudocode:  
1.  Initialize Q_k = 0, N_k = 0 for all k = 1, ..., K 
2.  for t = 1, 2, 3, ... do 

3.      # Selection step 

4.      for k = 1, ..., K do 
5.          if N_k == 0 then 

6.              A_t ← k 

7.          else 
8.              UCB_k ← Q_k + sqrt(2 * log(t) / N_k) 

9.          end if 

10.     end for 

11.     A_t ← argmax(UCB_k) for k = 1, ..., K 
12.     # Pull the selected arm and observe the reward 

13.     r_t ← reward from pulling arm A_t 

14.     # Update the number of times arm A_t has been pulled 
15.     N[A_t] ← N[A_t] + 1 

16.     # Update the estimated reward for arm A_t 

17.     Q[A_t] ← Q[A_t] + (1 / N[A_t]) * (r_t - Q[A_t]) 
18. end for 

Q_k is the current estimated expected reward for arm k. 

N_k is the number of times arm k has been selected. 

UCB_k is the Upper Confidence Bound value of arm k. 
At each time step t, the algorithm selects the arm with the largest UCB_k and pulls that arm to observe 

the reward r_t. 

The number of times an arm is selected N_k and the expected reward Q_k are then updated. 

2.5.  Thompson Sampling  

Thompson Sampling (TS), also known as posterior sampling or probabilistic matching, is an efficient 

Bayesian multi-armed bandit (MAB) strategy. The strategy solves the exploration-exploitation tradeoff 

problem by combining Bayesian statistical inference and probabilistic sampling. Specifically, the 
Thompson sampling method builds a probabilistic model for the payoffs of each “arm” that is typically 

updated based on historical data. Each time an action is chosen, the algorithm draws a sample from the 

current posterior distribution for each arm. Then, the arm with the highest sample payoff is selected for 
placement. The key aspect of this approach is that each sample may yield different results, which 

naturally introduces exploration, especially for arms with less data (and therefore higher uncertainty). 

This strategy has proven to be very effective, especially in situations where the dynamics of the 
environment change or where there is a high demand for both initial exploration and long-term 

utilization.A paper was shown that this algorithm performs well in handling uncertainty and adapting to 

dynamic advertising markets, but that its computational complexity is relatively high [9]. 

In the Thompson sampling algorithm, we first need to initialize our prior distribution:  

Beta(α𝑎 = 1, β𝑎 = 1) (2) 
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Then sample from the Beta distribution: 

θ𝑎(𝑡)~Beta(α𝑎 , β𝑎) (3)  

Then select the arm: 

𝐴𝑡 = argmax
𝑎

θ𝑎 (𝑡) (4) 

Then observe and update the distribution:  

α𝐴𝑡 = α𝐴𝑡 + 𝑟𝑡 (5) 

β𝐴𝑡 = β𝐴𝑡 + (1− 𝑟𝑡) (6) 

These steps encapsulate a Bayesian updating mechanism that constantly updates the prior distribution 

of each robotic arm based on observed rewards, and repeating these steps in the algorithm adjusts its 

estimate of the probability of success for each arm. 
 

Pseudocode:  
1.  Initialize α_k = 1, β_k = 1 for all k = 1, ..., K 

2.  for t = 1, 2, 3, ... do 
3.      # Sample from the Beta distribution for each arm 

4.      for k = 1, ..., K do 

5.          θ_k ~ Beta(α_k, β_k) 
6.      end for 

7.      # Selection step 

8.      A_t ← argmax(θ_k) for k = 1, ..., K 

9.      # Pull the selected arm and observe the reward 
10.     r_t ← reward from pulling arm A_t 

11.     # Update the parameters of the Beta distribution for arm A_t 

12.     if r_t == 1 then 
13.         α[A_t] ← α[A_t] + 1 

14.     else 

15.         β[A_t] ← β[A_t] + 1 
16.     end if 

17. end for 

α_k and β_k are the parameters of the Beta distribution corresponding to each arm k. 

θ_k is the sample value of each arm drawn from the Beta distribution. 
A_t is the arm selected at time step t. r_t is the sample value obtained from arm A_t. 

r_t is the reward from arm A_t, usually binary (0 or 1). 

Update the Beta distribution parameters of the selected arm A_t with the value of the reward r_t: if 
the reward is 1, update α_k; if the reward is 0, update β_k. 

3.  Experiment 

The purpose of this experiment is to demonstrate the effectiveness of the multi-armed bandit model by 
simulating advertisement placement and to compare the performance of ϵ -greedy, UCB and TS 

algorithms. 

The data source for the experiment is Dataset: Online Advertisement Click-Through Rates published 

on mendeley data. there are 11 features in the data. they are Age, gender, income, location, ad type, ad 
topic There are 11 features in the data: Age, gender, income, location, ad type, ad topic, ad placement, 

clicks, click time, conversion rate, and Click Through Rate. 

Experimental Steps: 
 1. experimental design: 
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 - Determine the Arm of the experiment such as ad type, ad topic, incom level. 

 - The arm chosen for this experiment is ad type, and each ad type is an Arm. 

 2. algorithm implementation: 

 - Implement ϵ -greedy, UCB and Thompson sampling algorithms using Python. 
 - Ensure that the algorithms can adjust the ad placement strategy in real time based on the sampled 

data. 

 3. simulation: 
 - Sample the dataset to simulate the ad placement within a set number of rounds. The next Arm 

is selected by the algorithm by giving the algorithm's recommended arm based on the sampled data. 

 5. Result Evaluation: 

 - Algorithm performance is reflected by calculating the cumulative regret value for each algorithm 
    Regret = Best Arm Bonus - Selected Arm Bonus 

Because of the large uncertainty at the beginning of the MAB model, each algorithm was run ten 

times to take the average and express the standard deviation. 

4.  Result 

 

Figure 1. Number of rounds Vs cumulative regrets 

Graphic Analysis 

Algorithm comparison: 

UCB (orange line) shows the highest cumulative regret in the graph, indicating that it performs the 

worst in this particular setup. ε-greedy (blue line) cumulative regret is in the middle of the spectrum and 
outperforms UCB. Thompson Sampling (green line) demonstrates the lowest cumulative regret, 

suggesting that it works the best in these strategies. 

Confidence intervals: 

The shaded areas in the figure represent the confidence intervals for each algorithm, indicating the 
variability of the algorithm's results. Thompson Sampling shows the least variability, indicating that its 

results are the most stable. UCB has the widest confidence intervals, indicating that its performance 

fluctuates widely between trials. 

Proceedings of  CONF-MLA 2024 Workshop:  Semantic  Communication Based Complexity Scalable Image Transmission System for
Resource Constrained Devices 

DOI:  10.54254/2755-2721/83/2024GLG0079 

100 



 

 

Performance Discussion: 

The high regret of the UCB algorithm may indicate that its exploration mechanism is not efficient 

enough in the face of such problems, or that the parameter settings (e.g., exploration coefficients) are 

not well adapted to the characteristics of the data. This may have led to over-exploration of suboptimal 
arms or failure to utilize the best known arms in a timely manner. ε-greedy algorithms, although simple, 

have their performance strongly affected by the exploration probability ε. The performance of the UCB 

algorithm may be significantly affected by the probability of exploration ε. Appropriate values of ε may 
significantly improve its performance, but it usually lacks the flexibility to adapt to dynamic 

environments. Thompson Sampling selects actions by sampling from a posteriori distributions, and this 

probability-based approach seems to be more effective in dealing with uncertainty and the trade-offs 

between exploration and exploitation, especially when the rewards have a high degree of variability.  
Thus, Thompson Sampling shows its power on the Multi-armed bandit problem, especially in terms 

of consistently optimizing performance and reducing regrets over long runs. ucb may require parameter 

tuning or modifications to the algorithm itself to better accommodate specific experimental setups or 
reward distributions. epsilon-greedy's performance sits somewhere in between the other two algorithms 

in this experiment, the However, it still has a large standard deviation, so it is not stable. ϵ -greedy and 

UCB's performance both depend on the setting of the parameters. This is difficult to apply to new 
placement scenarios that do not have too much data. 

5.  Conclusion 

In summary, this study shows that Thompson Sampling is the most suitable algorithm among three Multi 

armed bandit algorithms for the optimization of advertisement placement strategies. It not only reduces 
cumulative regret, but also maintains a stable performance. The UCB algorithm Although it possesses 

good theoretical properties for exploring and exploiting the balance, finer tuning parameters are needed 

in practical applications to realize its potential. The ε-greedy algorithm Although simple, its performance 
is limited, especially in dynamic environments that require long running times. 

However, the MAB model still has some limitations in the problem of advertisement placement. How 

to balance exploration and utilization in practice is a limitation, if too much exploration will increase 

regret, while not enough exploration will miss the best Arm. In addition, the fast changing market and 
the responsiveness of the MAB model is another test. In practice, the responsiveness of the Multi-Arm 

Bandit model may not be fast enough to adjust strategies in real time. In addition, the core of the MAB 

model is to optimize timeliness metrics such as click-through rate. This may lose sight of advertisers' 
long-term business goals. In addition, there are many limitations in the experiments of this paper, such 

as whether the data source of the database is trustworthy, and there will be errors if the data volume is 

too small. 
Future work could consider investigating more variants of UCB, as well as further optimizing the 

parameter settings of Thompson Sampling, with a view to achieving better results in more complex and 

dynamic advertising environments. Additionally by investigating more types of arms and different 

advertising scenarios, as well as combining different datasets. Studying the performance of these 
algorithms in different problems can provide more basis for actual advertisement placement. 
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