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Abstract. This paper presents the development and evaluation of “Cura-LLaMA,” an open-
source large language model (LLM) tailored for the medical domain. Based on the TinyLlama 
model, Cura-LLaMA was fine-tuned using the PubMedQA dataset to enhance its ability to 
address complex medical queries. The model’s performance was compared with the original 
TinyLlama, focusing on its accuracy and relevance in medical question-answering tasks. Despite 
improvements, the study highlights challenges in using keyword detection methods for 
evaluation and the limitations of omitting non-essential columns during fine-tuning. The findings 
underscore the potential of fine-tuning open-source models for specialized applications, 
particularly in resource-limited settings, while pointing to the need for more sophisticated 
evaluation metrics and comprehensive datasets to further enhance accuracy and reliability. 

Keywords: Medical LLM, PubMedQA, fine-tuning, open-source model. 

1.  Introduction 
A Large Language Model (LLM) is a type of artificial intelligence designed to process and generate 
human-like text based on patterns learned from extensive datasets. These models, which can have tens 
to hundreds of billions of parameters, are trained on large volumes of textual content[1][2]. Utilizing 
deep learning techniques, particularly transformer architectures, LLMs are capable of understanding 
context and generating responses across a wide range of domains[3]. In the medical field, LLMs hold 
great promise, with potential applications including the generation of clinical documents, the provision 
of initial diagnostic recommendations, and the delivery of personalized medical advice[4]. However, 
the closed-source nature of models like GPT-4 and ChatGPT restricts their customization for specific 
medical needs. Additionally, these models may generate "hallucinations"—confident yet factually 
incorrect responses—often due to insufficient training on specialized medical datasets[5]. 

To address these issues, specialized medical LLMs, such as Google Research’s Med-PaLM[6], have 
demonstrated the ability to achieve human expert-level performance in answering US Medical Licensing 
Examination (USMLE)-style questions[7]. However, Med-PaLM remains a closed-source model, with 
undisclosed details about its training data and architecture. Conversely, open-source models offer 
opportunities for customization and development tailored to specific medical contexts. For instance, 
Qilin-Med-7B, based on the Baichuan-7B open-source large model, focuses on Chinese medical 
knowledge[8]. However, its regional focus limits its applicability on a global scale[9]. 
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To overcome these limitations, we have developed a new medical domain large model, “Cura-
LLaMA,” based on the open-source TinyLlama model, which shares the same architecture and tokenizer 
as LLaMA2[10]. TinyLlama is a compact, open-source large language model, with a size of under 640 
megabytes and 1.1 billion parameters. Its compactness offers significant advantages in reducing 
computational costs and memory usage, making it suitable for deployment on standard computers[11]. 
This feature is particularly beneficial in regions with limited access to high-performance computing 
resources, such as rural clinics or developing countries, thereby broadening the accessibility of medical 
AI support. Additionally, TinyLlama's efficiency potentially leads to faster response times. 

The development of Cura-LLaMA involved several key stages. First, we identified the data necessary 
for training our model—PubMedQA, a specialized dataset designed for medical question-answering[12]. 
PubMedQA includes 1,000 expert-labeled instances, 61,200 unlabeled instances, and 211,300 
artificially generated QA instances[13]. We then integrated these extensive PubMedQA datasets into 
TinyLlama to create Cura-LLaMA. By tailoring TinyLlama with this medical-specific data, we 
enhanced its ability to handle complex medical queries and generate reliable, contextually appropriate 
responses. Finally, we released Cura-LLaMA and compared its performance with other open-source 
specialized medical models currently available. Our goal is to make Cura-LLaMA a practical and 
accessible tool for the global medical community. 

2.  Related Work 

2.1.  Large Language Models 
The foundational model for developing Cura-LLaMA, TinyLlama, is based on the architecture and 
tokenizer of LLaMA2[14]. LLaMA2 encompasses a series of LLMs with parameter counts ranging from 
7 billion to 70 billion[15], pretrained on publicly available online data sources with 2 trillion tokens[16]. 
Another noteworthy open-source large language model is Mistral-7B[17], an LLM with 7.3 billion 
parameters, featuring advanced attention mechanisms such as grouped-query attention (GQA) and 
sliding window attention (SWA). GQA enhances the model’s focus and response relevance, while SWA 
optimizes attention within specific text windows, allowing for efficient management of long text 
sequences, thereby improving processing speed and reducing computational demands[18]. 

2.2.  Fine-Tuning 
Large Language Models (LLMs) are fine-tuned by training on task-specific datasets following their 
initial pre-training on broad datasets, adapting these pre-trained models to perform specialized tasks or 
meet specific use case requirements. Fine-tuning not only enhances the model’s performance on 
specialized tasks but also mitigates issues like overfitting, where a model trained on a limited dataset 
might perform well on that data but poorly on unseen data. Fine-tuning is generally more feasible and 
less resource-intensive than training a new model from scratch for a particular purpose[19]. Vicuna-13B 
is an example of how fine-tuning can significantly enhance a model’s performance. Starting with a 
foundational LLaMA model pretrained on diverse datasets, the Vicuna team fine-tuned it specifically 
for chatbot functions using 70K user-shared conversations from ShareGPT. In preliminary evaluations, 
Vicuna-13B demonstrated a relative response quality of 92%, significantly surpassing LLaMA-13B’s 
68%, highlighting the effectiveness of fine-tuning in enhancing LLM capabilities[20]. 

2.3.  Medical Domain LLMs 
Several studies have developed fine-tuned, medical-specialized LLMs based on open-source pre-trained 
LLMs. For instance, PMC-LLaMA focuses on adapting the LLaMA model to the medical domain by 
incorporating domain-specific knowledge, including medical QA, rationale, and conversational 
dialogues, encompassing a total of 202 million tokens. Fine-tuning techniques were used to align the 
model with medical terminologies and scenarios. Evaluations of PMC-LLaMA against several medical 
QA benchmarks demonstrated its superior performance, even outperforming ChatGPT with 175B 
parameters in certain aspects, despite having only 13B parameters[21]. Another model, Me-LLaMA, 
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utilizes a large-scale dataset consisting of 129 billion tokens to adapt the LLaMA2 model for medical 
contexts. It is claimed that Me-LLaMA outperforms other open-source medical LLMs in zero-shot, few-
shot, and supervised learning scenarios across various datasets[22]. However, both models have 
limitations in generating responses that are not always factually accurate, as the veracity of all input data 
cannot be guaranteed. 

3.  Methodology 
Evaluating TinyLlama: To evaluate the performance of the original TinyLlama model in the medical 
domain, we tested the chat model version, TinyLlama-1.1B-Chat-V0.4. This version was trained on 
datasets such as SlimPajama and the data used to train StarCoder[23]. SlimPajama is derived from the 
RedPajama dataset[24], which, according to Together AI, comprises seven data slices, none of which 
specifically target the medical domain[25]. The StarCoder dataset primarily incorporates over 80 
different programming languages, as well as text extracted from GitHub issues, commits, and 
notebooks[26]. Consequently, the TinyLlama chat model was not explicitly designed for the medical 
field. Through our experiments, we aimed to elucidate the potential limitations and shortcomings of a 
general-purpose model when applied to specialized medical queries. 

The experiments were conducted on an Alibaba Cloud gn6v server, equipped with an NVIDIA Tesla 
V100 GPU with 32 GB VRAM and a 12-core Intel Xeon Platinum 8163 processor, running Ubuntu 
22.04 64-bit operating system. Model inference was performed using PyTorch 2.3.0+cu121 and 
Transformers 4.41.2, with additional support from libraries such as Numpy 1.26.4. All experiments were 
executed in this environment. 

In this experiment, we utilized a subset of the PubMedQA dataset, specifically the pqa_labeled subset, 
for testing purposes. This subset comprises 1,000 expert-annotated question-answer (QA) instances, 
with each instance containing five components: pubid, question, context, long_answer, and 
final_decision. Due to constraints in cost and time, we limited our testing to the first 500 rows of this 
subset. 

The testing methodology, Query-Response Consistency Analysis, was as follows: the medical 
questions in the [question] component were input into the TinyLlama chat model, and the model’s 
predicted outputs were compared against the corresponding final_decision. The final_decision can take 
one of three possible outcomes: yes, no, or maybe. We employed keyword detection for comparison: if 
the TinyLlama output contained any of the keywords yes, no, or maybe (with “yes and no” also classified 
as maybe), we compared it to the final_decision. If the two matched, the prediction was marked as 
correct; otherwise, it was marked as incorrect. If the model’s output did not contain any of the keywords, 
or if it contained two or more of the keywords yes, no, or maybe, it was categorized as “unable to locate 
keyword.” 

It is important to note that the model occasionally generated irrelevant or nonsensical text (referred 
to as Garbage Text or Gibberish). For instance, in response to a medical question regarding laryngeal 
mask airway procedures, the model might output content related to TensorFlow or the implementation 
of Open Assistant projects, which are entirely unrelated to the medical query. Consequently, in this 
study, if the model’s response included any form of unintelligible or random text, such as coding errors, 
incoherent content, or unrelated technical references, it was considered an abnormal response, and the 
prediction was marked as incorrect. 

The following code snippet illustrates the process of loading the dataset, generating predictions, and 
recording the results using the TinyLlama-1.1B-Chat-V0.4 model: 

 
from datasets import load_dataset 
from transformers import AutoTokenizer 
import transformers 
import torch 
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model = "TinyLlama/TinyLlama-1.1B-Chat-v0.4" 
 
def inference(question): 
    pipeline = transformers.pipeline( 
        "text-generation", 
        model=model, 
        torch_dtype=torch.float16, 
        device_map="auto", 
    ) 
 
    CHAT_EOS_TOKEN_ID = 32002 
 
    prompt = question 
 
    formatted_prompt = ( 
        f"user\n{prompt}\nassistant\n" 
    ) 
 
    sequences = pipeline( 
        formatted_prompt, 
        do_sample=True, 
        top_k=50, 
        top_p=0.9, 
        num_return_sequences=1, 
        repetition_penalty=1.1, 
        max_new_tokens=1024, 
        eos_token_id=CHAT_EOS_TOKEN_ID, 
    ) 
 
    seq = sequences[0] 
    ret = seq['generated_text'] 
    print(f"Result: {ret}") 
    return ret 
 
data = load_dataset("qiaojin/pubmed_qa", 'pqa_labeled') 
data = data['train'] 
 
NUM_SAMPLES = 496 
for idx, sample in enumerate(data): 
    question = sample["question"] 
    final_decision = sample["final_decision"] 
    print(f'### Question: {question}\n### Final Decision: 
{final_decision}') 
    model_prediction = inference(sample["question"]) 
    print(f'### Model Prediction: {model_prediction}\n\n') 
    with open('tinyllama_output.txt', 'a') as f: 
        f.write(f'### Question: {question}\n### Final Decision: 
{final_decision}\n### Model Prediction: {model_prediction}\n\n') 
    if idx == NUM_SAMPLES: 
        break 
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Fine-tuning for Cura-Llama: I employed the same computational setup described previously (see 

Evaluating TinyLlama section), leveraging the qiaojin/PubMedQA dataset available on Hugging Face 
for fine-tuning. To ensure that the test data did not overlap with the training data (pqa_labeled split), I 
selected the pqa_artificial subset, which consists of QA instances that have been meticulously annotated 
by experts, ensuring higher data quality. For this fine-tuning process, I utilized the first 1,000 rows of 
QA instances from the training split. To optimize the model’s performance under limited resources, I 
streamlined the dataset by retaining only the essential [question] and [final_decision] columns, 
discarding all other non-essential columns. Special tokens <im_start> and <im_end> are added to clearly 
delineate the question and the decision. This helps the model distinguish between input and output 
segments, improving its ability to generate accurate responses during fine-tuning. 

The following code snippet demonstrates how the pqa_labeled subset of the PubMedQA dataset was 
processed to prepare it for fine-tuning the Cura-LLaMA model: 
 

pubmed_dataset = pubmed_dataset.map( 
lambda questiontext: { 
    "text": f"<im_start>{questiontext['text']}<im_end> 
<im_start>{questiontext['final_decision']}<im_end>" 
}) 

 
During training, the number of epochs was set to 3, and the learning rate was fixed at 1e-5. This is 

aimed to ensure ensures that the model goes through a complete training cycle on all data but minimizing 
the risk of overfitting. I utilized Weights & Biases (wandb) to log and monitor the training process. The 
following outlines the key metrics and observations recorded during training: 

 
Figure 1. Training Loss Curve for Cura-LLaMA. 

This is the train loss curve during the fine-tuning process, which shows expected behavior in a well-
structured training process. The sharp initial drop in loss indicates that the model is quickly learning the 
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basic patterns in the data. As training continues, the curve flattens, showing that the model is making 
finer adjustments to optimize its performance. 

 
Figure 2. Evaluation Loss Curve for Cura-LLaMA 

This is the evaluation loss curve during the fine-tuning process, indicating that the model is learning 
effectively without significant overfitting and improving its generalization capabilities.  

To ensure consistency in our experiments and control for variables, we tested the fine-tuned model 
using the same dataset and methodology as described previously. We utilized the first 500 rows of the 
pqa_labeled subset for testing. The model’s performance in the medical domain was analyzed using the 
Keyword Detection Method (Query-Response Consistency Analysis). 

4.  Results 
TinyLlama Chat Model: The performance of the TinyLlama Chat Model in predicting responses to 
nearly 500 PubMedQA questions was evaluated using the previously described keyword detection 
method, Query-Response Consistency Analysis. Out of the 496 prediction results analyzed, 16 were 
identified as containing "Garbage Text or Gibberish." These abnormal responses predominantly 
included content related to machine learning algorithms, data analysis, cloud computing, and other 
computer science fields, thus failing to address the medical questions posed. Regardless of whether the 
response matched the [final_decision] in the keyword search, these instances were considered incorrect 
predictions. 

After excluding these abnormal responses, the analysis of the remaining valid responses (those 
without noise) revealed the following results: 107 responses (21.57%) were deemed correct as the 
keywords were successfully matched, while 176 responses (35.48%) failed to match the keywords and 
were thus considered incorrect. An additional 42.94% of the responses were classified as "unable to 
locate keyword." Even after excluding the "unable to locate keyword" responses, the probability of the 
TinyLlama Chat Model making correct predictions that align with the factual answers was only 37.81%. 

In some cases, the model generated responses that included "Garbage Text or Gibberish" unrelated 
to medical topics, indicating significant limitations in the TinyLlama Chat Model’s performance when 
handling PubMedQA questions, likely due to insufficient medical field-specific training data. 
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Performance Analysis of TinyLlama Chat v0.4 

 
Figure 3. Pie Chart of Response Validity 

 
Figure 4. Pie Chart of Prediction Correctness      Figure 5. Distribution of Prediction Correctness 

Cura-Llama: Using the keyword detection method, the output analysis yielded the following results: 
149 true responses (30.04%), 153 false responses (30.85%), and 194 responses classified as “Garbage 
Text or Gibberish” due to the inability to locate the keyword (39.11%). Notably, the true response rate 
for Cura-Llama has increased by 8.47% compared to the TinyLlama Chat v0.4. 
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Performance Analysis of Cura-Llama 

 
Figure 6. Distribution of Response Accuracy of Cura-Llama    Figure7: Composition of Cura-LLaMA’s 
Responses 

5.  Reflection 
Keyword Detection Method: The reliance on keyword detection as the primary evaluation method is 
a significant drawback. While straightforward, this method fails to capture the nuanced performance of 
the model, such as the accuracy of responses in a broader context. More sophisticated metrics, such as 
BERT-based evaluation or the F1 Score, could provide a more holistic assessment of the model’s 
performance, particularly in identifying partially correct responses or those that capture the context but 
lack explicit keywords. 

Drawback of Omitting Other Columns in the Dataset: Another limitation is the omission of non-
essential columns during the fine-tuning process. While this approach reduces computational load, it 
also potentially excludes valuable contextual information that could enhance the model’s understanding 
and response generation. Including a wider range of data features might improve the model’s ability to 
generate more accurate and contextually appropriate answers. 

6.  Conclusion 
This essay demonstrates a solid effort in advancing the capabilities of open-source LLMs for medical 
applications. The development of Cura-LLaMA is a promising step towards making specialized AI tools 
more accessible, particularly in resource-constrained environments. The observed improvements in the 
true response rate reflect the potential benefits of fine-tuning open-source models with domain-specific 
data. Overall, this is a commendable attempt at addressing the unique challenges of applying LLMs in 
the medical field, with room for further refinement and improvement. 
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