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Abstract. Skin disease image segmentation is a crucial component of computer-aided 

diagnosis, providing precise localization and delineation of lesions that enhance diagnostic 

accuracy and efficiency. Despite significant advancements in convolutional neural networks 

(CNNs), there remains substantial room for improvement in segmentation performance due to 

the diverse and complex nature of skin lesions. In this study, we propose DMDLK-Net, a 

dynamic multi-scale feature fusion network with deformable large kernels, specifically 

designed to address the challenges in skin disease segmentation. Our network incorporates a 

Dynamic Deformable Large Kernel (DDLK) module and a Dynamic Multi-Scale Feature 

Fusion (DMFF) module, enhancing the model's ability to capture intricate lesion features. We 

present the performance of DMDLK-Net on the ISIC-2018 dataset, highlighting its promising 

results. Key contributions of this work include the innovative use of deformable large kernels 

for adaptive feature extraction and the introduction of dynamic multi-scale fusion to balance 

local and global information. Our experimental results confirm the effectiveness of 

DMDLK-Net in delivering high-precision segmentation, thus providing a reliable tool for 

clinical applications. 

Keywords: skin lesion segmentation, attention mechanism, deformable large kernel, 

multi-scale information, dynamic feature fusion. 

1.  Introduction 

Skin disease image segmentation is a critical component of computer-aided diagnosis, providing 

precise localization and delineation of lesions, thereby improving diagnostic accuracy and efficiency. 

In recent years, with the development of deep learning technologies, especially advancements in 

convolutional neural networks (CNNs), significant breakthroughs have been achieved in the field of 

medical image segmentation. From early fully convolutional networks (FCNs) to subsequent U-Net 

and its variants [1,2], and even to complex networks utilizing attention mechanisms and Transformer 

structures [3,5], the performance of neural network models in image segmentation is continuously 

improving. 

However, the segmentation performance of existing models in the field of skin disease image 

segmentation still has considerable room for improvement and potential for growth. This is primarily 

due to the following issues: first, the diversity and complexity of skin lesions, including irregular 

shapes, color variations, and background interference, make it challenging for models to distinguish 

between normal tissues and lesion areas [6-9]. Secondly, existing models often neglect the balance 
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between local and global information [3], resulting in decreased segmentation accuracy when dealing 

with blurred edges and complex structures. 

To overcome these challenges, we proposed DMDLK-Net, adopting a unique approach by 

introducing a dynamic decoding strategy combined with a multi-scale feature fusion, enhancing the 

ability to capture and refine skin lesion features. This design improves the sensitivity of the model in 

capturing fine structures and complex textures. In the experiments section, we will demonstrate the 

performance of DMDLK-Net on skin disease image segmentation datasets, proving its superiority in 

segmentation accuracy. 

The main contributions of this paper are as follows:  

1. We introduced deformable large kernels (DLK) to address the morphological variability of skin 

lesion regions, designing the DDLK module for flexible feature extraction. 

2. We design a DMFF module to dynamically achieve multi-scale feature integration by channel 

and spatial attention enhancement with less information losing. 

3. We present a network which connects features in different level. The model outperforms existing 

state-of-the-art models, significantly improving segmentation accuracy. 

In the upcoming part, we first provide a detailed introduction to the network structure, particularly 

focusing on the two key components in Section 2. Experiments and analysis are drawn in Section 3. 

Finally, some conclusions are provided in Section4. 

2.  Methods 

2.1.  Dynamic Deformable Large Kernel (DDLK) 

Based on the DLK module of D-Net [4], we improved it and proposed the DDLK module using 

deformable large kernels for dynamic feature extraction. The deformable large kernel (DLK) can 

flexibly distort receptive fields, allowing the model to adapt to different data patterns [6, 7, 8, 9]. For 

segmentation tasks of skin diseases with diverse shapes and variable morphology, such flexible kernel 

shapes can enhance the representation of lesion areas, improving the definition of object contours and 

feature extraction accuracy. The structure of the deformable large kernel is shown in Figure 1. 

The DDLK module first uses two serially connected DLKs with different kernel sizes to capture both 

local feature 𝑀1 and global feature 𝑀2 : 

𝑀1, 𝑀2 = 𝐷𝐿𝐾𝐶𝑜𝑛𝑣(𝐺), 𝐷𝐿𝐾𝐶𝑜𝑛𝑣(𝐷𝐿𝐾𝐶𝑜𝑛𝑣(𝐺)) 

where 𝐺 is the input feature. The generated feature maps are concatenated, and then global average 

pooling and global max pooling are applied to aggregation features in the spatial dimension. Then we 

adopt a convolution layer for feature interaction and a Sigmoid activation for information selection, and 

dynamically enhance vital information, obtaining feature 𝑀∗: 

𝑀𝑝 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑒𝑃(𝐶𝑜𝑛𝑐𝑎𝑡(𝑀1, 𝑀2)), 𝑀𝑎𝑥𝑃(𝐶𝑜𝑛𝑐𝑎𝑡(𝑀1, 𝑀2))) 

𝑀1
∗ = 𝑀1 ⊗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣1×1(𝑀𝑝)) 

𝑀2
∗ = 𝑀2 ⊗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣1×1(𝑀𝑝)) 

𝑀∗ = 𝑀1
∗ ⊕ 𝑀2

∗ 

By adding residual connections with the input feature map, prominent information in the channel 

dimension of the lesion features can be better replenished and refined:  

𝐺∗ = 𝐺 ⊕ 𝑀∗ 

where "⊗" represents pixel-wise multiplication, and "⊕" represents pixel-wise addition. 
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Figure 1. DDLK 

2.2.  Dynamic Multi-Scale Feature Fusion (DMFF) 

Inspired by Jin Yang et al. [4] and Huajun Liu et al. [10], we propose a DMFF module. As shown in 

Figure 3, given two input features, 𝐺1 and 𝐺2, which come from different layers of the model, the DMFF 

module selectively fuses different features in both spatial and channel dimensional enhancement . 

In the spatial attention part, 𝐺1 and 𝐺2 are downsampled to the size of 1 × H × W by using 1 × 1 

convolutions, and then are fused to generate the integrated feature 𝑀𝑆 : 

𝐺1𝑆 = 𝐶𝑜𝑛𝑣1×1(𝐺1) 

𝐺2𝑆 = 𝐶𝑜𝑛𝑣1×1(𝐺2) 

𝑀𝑆 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐺1𝑆 ⊕ 𝐺2𝑆) 

where " ⊕ " represents pixel-wise addition. In the channel attention part,  G1 and  G2 are firstly 

concatenated and then processed through three parallel paths. In the uppermost path, 𝐺𝐶  is 

downsampled in channel dimension to 1 × H × W through a 1 × 1 convolution, reshaped to HW × 1, 

and then passed through a Softmax layer to highlight the channel features. In the other parallel path, 

𝐺𝐶  is downsampled to C/2 × H × W through a 1 × 1convolution and reshaped to C/2 × HW  for 

subsequent feature refinement and then obtain feature 𝐺𝐶−𝑀 , which integrates spatial and channel 

information and enhance the feature contrast in channel dimension. 

𝐺𝐶−𝑈 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝑠ℎ𝑎𝑝𝑒𝐻𝑊×1(𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑐𝑎𝑡(𝐺1, 𝐺2)))) 

𝐺𝐶−𝑀 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒C/2×HW(𝐶𝑜𝑛𝑣1×1(𝐺𝐶)) 

GC−UM = GC−M × GC−U 

where "×" represents matrix multiplication. After additionally processed through a 1 × 1 convolution, 

a layer normalization, and a Sigmoid function, the activated feature integrates with the residual 

connection of GC, resulting in the enriched feature MC ∶ 

GC
∗ = GC ⊗ Sigmoid(LN(Conv1×1(GC−UM))) 

MC = (Conv1×1(GC
∗ )) 

Finally, the features dynamically selected by spatial and channel information are fused into G∗ to 

complete selected feature fusion: G∗ = Ms ⊗ MC . 
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Figure 2. DMFF 

2.3.  DMDLK-Net Architecture 

The architecture of DMDLK-Net is illustrated in Figure 3. It follows a classic symmetric 

encoder-decoder architecture and is organized into four levels. 

In the encoder, we use the Mobile Convolution and Attention (MOAT) module for encoding tasks 

[5]. The structure of the MOAT module is shown on the left side of Figure 3. It sequentially consists of 

a lightweight convolutional part with depthwise separable convolutions for feature extraction and a 

self-attention block for attention enhancement, maintaining high feature extraction and expression 

capabilities while having a simple structure and low computational complexity. 

The encoder is divided into four levels, with each level downsampling the input image by half. The 

first level is the STEM layer, composed of simple convolutions. The second to fourth levels consist of 

dual, triple, and heptuple stacked MOAT modules, respectively. In each stack of MOATs, the top 

MOAT module is responsible for downsampling, while the remaining modules enhance feature 

extraction. After downsampling the input image to 1/16th of its size, it is fed into the decoder through a 

symmetric bottleneck structure with down-up sampling. 

The decoder is also divided into four levels, corresponding one-to-one with the encoder levels. One 

of our major innovations is incorporating three levels of skip connections (Upsampling skip, 

Downsampling skip, Identity skip) at each level of the decoder, passing the feature from the lower, 

corresponding, and upper levels of the encoder to the decoder, respectively, for feature concatenation. 

This allows the capture of both more global (lower level) and finer (upper level) abstract information. 

During the bottom-up process, the DMFF module dynamically fuses the concatenated features from 

the encoder with the upsampled features from the deeper decoder levels. The resulting feature is passed 

to the DDLK module for further dynamic feature extraction and attention enhancement, finally being 

passed to the deeper levels of the decoder. At each level, the feature map is upsampled to twice its size, 

and ultimately, the final output is produced at the input size. 
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Figure 3. Overall Architecture 

3.  Experiment 

3.1.  Datasets 

Our experiments primarily utilize the publicly available ISIC (International Skin Imaging Collaboration) 

2018 dataset. The ISIC 2018 dataset is widely used for skin lesion medical image analysis. The 

segmentation task contains 2,594 images for the training set, 100 images for the validation set, and 1,000 

images for the test set, with lesion labels annotated by experts. To enrich data and enhance the 

robustness of the model, we performed data augmentation: each image was randomly subjected to 

horizontal flipping, vertical flipping, rotation, scaling, translation, color jittering, and advanced blurring, 

expanding the training set to three times its original size, resulting in nearly 7,800 images. All input 

images were resized to a dimension of 448 × 448. 

3.2.  Details 

We use the cross-entropy function as the loss function, adopt the Adam algorithm as the optimizer, set 

the learning rate to 0.0001, batch size to 4, and trained for 200 epochs. The model training was 

conducted on a GPU platform with NVIDIA RTX 3090s. 

3.3.  Results 

We tested the trained model on the test set containing 1,000 images to evaluate the model's performance 

and compared it with existing models ,as shown in Table 1. To access the accuracy of the segmentation 

results, we used Pixel Accuracy(Acc), Intersection over Union(IoU), and Dice Coefficient(Dice) as 

evaluation metrics. 

Table 1. Comparison of eleven existing models 

 IoU Dice Acc 

UNet 78.14  86.28  91.92  

UNet++ 79.61  87.27  92.13  

Attention-UNet 79.61  87.42  92.74  

UTNet 78.50  86.29  92.16  

SegFormer 79.96  87.48  92.72  

Swin-Unet 79.74  87.02  92.19  

UNext 77.36  85.63  91.75  
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MALUNet 79.73  87.59  92.53  

UCTransNet 79.67  87.19  92.46  

DCSAU-Net 79.00  86.80  92.12  

EGE-UNet 78.45  86.12  92.05  

Average 79.07 86.83 92.25 

DMDLK-Net 79.65  87.05  94.44  

Our DMDLK-Net achieved the best performance in the Acc, significantly surpassing the other 

eleven models in the comparison experiments. Our model is 1.70% higher than the best-perform model 

in Acc, with IoU and Dice coefficients 0.58% and 0.22% higher than the average performance of these 

existing models, respectively. 

Additionally, to visually demonstrate the effectiveness of our model, Figure 4 shows several 

representative segmentation examples on the ISIC-2018 test set, including the original image, ground 

truth, and the segmentation results of DMDLK-Net. Our model accurately delineates the lesion 

boundaries and details, highlighting its practical value in clinical applications. 

The results demonstrate that our method has advantages in handling various skin disease lesion 

features and complex texture information. The introduction of deformable large kernels in the DDLK 

module enables more flexible and effective extraction of lesion features, significantly enhancing the 

accuracy of contour localization and edge delineation. The DMFF module, through multi-scale attention 

mechanisms, effectively integrates different levels of features, improving the representation capabilities 

and generalization performance of the model. 

 

Figure 4. Visual display of the segmentation effect of DMDLK-Net 

4.  Conclusion 

In this paper, we introduced DMDLK-Net, a novel network architecture designed to improve the 

segmentation of skin disease images by addressing the inherent challenges posed by the diversity and 

complexity of skin lesions. Our approach leverages the Dynamic Deformable Large Kernel (DDLK) 

module for flexible and accurate feature extraction and the Dynamic Multi-Scale Feature Fusion 

(DMFF) module for effective integration of multi-scale information. The comprehensive experiments 

conducted on the ISIC-2018 dataset demonstrate that DMDLK-Net outperforms existing models in 

Table 1. These results highlight the potential of DMDLK-Net to enhance clinical diagnostics by 

providing precise lesion segmentation. Future work will explore the extension of our network to other 

types of medical image segmentation tasks and further optimize the model for real-time applications. 

Additionally, integrating more advanced attention mechanisms and exploring the benefits of 

self-supervised learning could further enhance the performance and generalization capabilities. 

Table 1. (continued). 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/95/2024BJ0061 

84 



References 

[1] Jonathan Long, Evan Shelhamer, Trevor Darrell. (2011). Fully Convolutional Networks for 

Semantic Segmentation. In: Computer Vision and Pattern Recognition. arXiv:1411.4038. 

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. (2015). U-Net: Convolutional Networks 

for Biomedical Image Segmentation. In: Computer Vision and Pattern Recognition. arXiv: 

1505.04597. 

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, 

Jakob Uszkoreit, Neil Houlsby. (2020). An Image Is Worth 16x16 Words: Transformers For 

Image Recognition At Scale. In: Computer Vision and Pattern Recognition. 

arXiv:2010.11929. 

[4] Jin Yang, Peijie Qiu, Yichi Zhang, Daniel S. Marcus, Aristeidis Sotiras. (2024). D-Net: 

Dynamic Large Kernel with Dynamic Feature Fusion for Volumetric Medical Image 

Segmentation. In: Computer Vision and Pattern Recognition. arXiv:2403.10674. 

[5] Chenglin Yang, Siyuan Qiao, Qihang Yu, Xiaoding Yuan, Yukun Zhu, Alan Yuille, Hartwig 

Adam, Liang-Chieh Chen. (2022). MOAT: Alternating Mobile Convolution and Attention 

Brings Strong Vision Models. In: Computer Vision and Pattern Recognition. 

arXiv:2210.01820. 

[6] Reza Azad, Leon Niggemeier, Michael Hüttemann, Amirhossein Kazerouni, Ehsan Khodapanah 

Aghdam, Yury Velichko, Ulas Bagci, Dorit Merhof. (2023). Beyond Self Attention: 

Deformable Large Kernel Attention for Medical Image Segmatation. In: Computer Vision 

and Pattern Recognition. arXiv:2309.00121. 

[7] Ding, X., Zhang, X., Han, J., Ding, G. (2023). Scaling up your kernels to 31x31: Revisiting 

large kernel design in cnns. In: Proceedings of the IEEE/CVF conference on computer vision 

and pattern recognition. pp. 11963–11975. arXiv:2303.09030. 

[8] Li, Y., Hou, Q., Zheng, Z., Cheng, M.M., Yang, J., Li, X. (2023). Large selective kernel 

network for remote sensing object detection. arXiv:2303.09030 

[9] Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S. (2022). A convnet for the 

2020s. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition. pp. 11976–11986. arXiv:2201.03545. 

[10] Huajun Liu, Fuqiang Liu, Xinyi Fan, Dong Huang. (2021) Polarized Self-Attention: Towards 

High-quality Pixel-wise Regression. In: Computer Vision and Pattern Recognition. arXiv: 

2107.00782. 

 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/95/2024BJ0061 

85 


