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Abstract. The time series prediction problem has a very wide range of applications in many 

fields. Most scholars use the LSTM class of algorithms for prediction. However, this method 

consumes a significant amount of computational power and presents several challenges. To 

address this issue, this paper proposes a time series forecasting method based on feature fusion 

and XGBoost. Specifically, we first utilize holiday information and the K-Means algorithm for 

feature extraction to expand the feature dimensions of the dataset, and then employ XGBoost as 

a model for training and prediction. Experiments demonstrate that the method proposed in this 

paper significantly reduces error compared to other traditional machine learning and deep 

learning methods, while the training time is much shorter than these methods. For example, 

compared with LSTM, the MSLE of this model decreases by 1.42%, while the training time is 

only 0.15% of that of LSTM. This greatly saves on training costs and computational power 

consumption. This confirms the effectiveness of using machine learning and clustering 

algorithms in time series prediction and provides new methods and practical application 

directions for future time series prediction models. 
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1.  Introduction 

Time series forecasting involves predicting future trends, patterns, or values by analyzing historical data 

and is widely used across many fields. In the financial and economic sectors, it can predict market trends 

and macroeconomic indicators [1]. In meteorology, it forecasts weather and climate change [2]. In public 

health, it projects disease trends [3]. Time series forecasting provides accurate insights into future 

developments, which are invaluable for resource optimization, risk management, and decision support. 

This method holds significant social relevance and research value. 

The mainstream methods of time series forecasting can primarily be classified into traditional 

methods and machine learning-based methods. The traditional time series analysis methods typically 

complete the forecasting by analyzing the mathematical or statistical properties of the data. George Box 

et al. [4] incorporated autocorrelation and partial autocorrelation functions into the differential 

autoregressive moving average model. Through model identification, parameter estimation, and 

diagnostic checking of the time series data modeling, they effectively analyzed and forecasted the 

aviation data set, achieving a root mean square error of 0.037. Robert F. Engle [5] utilized autoregressive 

conditional heteroskedasticity for time series forecasting, creating a time-dependent variance series. 

Proceedings of  the 6th International  Conference on Computing and Data Science 
DOI:  10.54254/2755-2721/95/2024BJ0062 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

86 



 

 

This model considers the time-varying nature of volatility and accurately captures the dynamics among 

high and low volatility periods, successfully predicting the inflation rate in the U.K. Charles C. Holt [6] 

extended the simple exponential smoothing method to address the trend component of the data, 

enhancing the prediction accuracy for time series with trends. Sean J. Taylor et al. [7] introduced a 

decomposable time series model that accounts for trend, periodicity, and specific events, efficiently 

forecasting time series with seasonal characteristics and event impacts. Although traditional methods 

can yield good results under certain conditions, they heavily rely on human-designed parameter 

adjustments when building the model. Consequently, it is often challenging to fully extract the 

characteristics of the time series, limiting the prediction accuracy, especially for nonlinear and non-

smooth time series. 

In recent years, with the development of artificial intelligence and improvements in graphics card 

processing, machine learning methods have been widely used in the field of time series forecasting. 

Mehrnaz Ahmadi and Mehdi Khashei [8] addressed deterministic and uncertain patterns in data by 

separately combining a support vector machine with a fuzzy support vector machine, and finally used 

another support vector machine to integrate the different models. Xueheng Qiu [9] selected linear 

combinations of features by applying a least squares classifier at each node of the decision tree, allowing 

the random forest model to consider multiple linear combinations of features simultaneously. This 

approach captures the complex structure of data and has demonstrated strong robustness in forecasting 

electricity load demand in the Australian energy market. Mst Noorunnahar et al. [10] utilized XGBoost 

for time series forecasting by using an optimized gradient boosting algorithm and aggregating outputs 

from multiple decision trees. This method predicted the annual rice production in Bangladesh with an 

average absolute percentage error of 5.38%, outperforming the ARIMA model’s 7.23%. Beyond the 

earlier mentioned machine learning techniques, neural network-based deep learning models are 

increasingly being utilized. Samit Bhanja and Abhishek Das [11] improved recurrent neural networks 

by introducing multiple hidden layers, which enabled the model to efficiently learn complex sequential 

dependencies and nonlinear relationships, thus improving prediction of future data points. Ryan Solgi 

et al. [12] employed a long short-term memory network to process time series data, effectively capturing 

and utilizing long-term dependencies in historical data to accurately predict future changes in 

groundwater levels. Haiping Lin et al. [13] used a gated recurrent unit (GRU) network model to process 

sequence data. Through a multilayer network structure and variational mode decomposition technique, 

the model enhanced learning capabilities and prediction accuracy for long-term sequence data, 

successfully predicting groundwater data changes. Machine learning methods can flexibly handle 

nonlinear relationships and are suitable for many types of time series data. However, traditional machine 

learning algorithms are highly dependent on manually selected features and often require complex data 

preprocessing. In contrast, neural network-based methods facilitate end-to-end automatic feature 

extraction but require significant computational resources for training, which is costly and may lead to 

issues such as overfitting. 

To address the issues mentioned, this paper proposes a time series prediction method based on feature 

fusion and XGBoost. Initially, the data are preprocessed, and feature extraction is performed using 

algorithms such as K-Means to enhance the feature set. Subsequently, XGBoost is employed for 

predicting the time series. The XGBoost algorithm requires fewer computational resources and is less 

complex to implement compared to methods like LSTM. Consequently, our method can efficiently and 

effectively accomplish the task of time series prediction. 

2.  Methodology 

2.1.  K-means clustering algorithm  

The K-means algorithm is an unsupervised algorithm for cluster analysis, developed by Hugo Steinhaus 

[14], Stuart Lloyd [15], and Robert C. Jancey [16], among other researchers in various fields. The 

method is simple, efficient, and widely used across numerous domains.  
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K-means excels at extracting unnoticed behaviors and patterns from data without any prior 

knowledge, clustering time series data into several groups with similar trends and patterns. Additionally, 

the K-means clustering algorithm is highly efficient in handling large-scale datasets, making it suitable 

for analyzing and clustering substantial amounts of data. Therefore, we employ this algorithm for the 

preliminary feature extraction of our time series dataset. The main process of this algorithm is outlined 

as follows: 

Initially, k points are selected as the initial centers: m1(1), m2(1), m3(1) ..., mk(1) . The algorithm 

then follows an iterative loop process to optimize the centroid locations: 

(1) Assignment: Traverse each data point xp, and assign it to the centroid with the least squares 

Euclidean distance, mathematically expressed as follows:  

𝑆𝑖
(𝑡)

= {𝑥𝑝: ∥ 𝑥𝑝 − 𝑚𝑖
(𝑡)

∥2≤∥ 𝑥𝑝 − 𝑚𝑗
(𝑡)

∥2, ∀𝑗, 1 ≤ 𝑗 ≤ 𝑘} (1) 

In equation (1).𝑆𝑖
(𝑡)

 denotes the set of 𝑖-th cluster at the 𝑡-th iteration. 

(2) Update: After each assignment, the algorithm updates the centroid of each cluster with the mean 

value of all points in the current cluster as follows: 

𝑚𝑖
(𝑡+1)

=
1

|𝑆𝑖
(𝑡)

|
∑ 𝑥𝑗

𝑥𝑗∈𝑆
𝑖
(𝑡)

(2) 

In equation (2).𝑚𝑖
(𝑡+1)

 denotes the new centroid of the 𝑖-th cluster at the (t+1)-th iteration. 

The process is repeated iteratively until one of the following termination conditions is met: (a) a 

preset number of iterations is reached, or (b) the change in all cluster centers over two consecutive 

iterations is less than the tolerance. 

Upon termination, the algorithm outputs the final centroids of each cluster and the data points within 

the cluster. 

2.2.  XGBoost 

XGBoost (eXtreme Gradient Boosting), proposed by Tianqi Chen et al. in 2014 [17], is an efficient and 

flexible gradient boosting framework. It optimizes the objective function by iteratively constructing 

decision trees and is applicable to common supervised learning tasks such as classification, regression, 

and ranking. 

Our experimental dataset exhibits strong time series characteristics and contains complex nonlinear 

patterns. XGBoost can learn these nonlinear relationships by constructing multiple gradient boosting 

decision trees, making it more effective than traditional models such as ARIMA, which often struggle 

with complex nonlinear patterns. The integration of multiple decision trees enhances the resilience of 

XGBoost against outliers and noise, enabling the model to effectively mitigate the impact of unexpected 

events during prediction. Additionally, XGBoost effectively reduces the risk of overfitting through the 

use of common regularization techniques, such as L1 and L2 regularization. These attributes make 

XGBoost highly suitable for completing time series predictions efficiently, which aligns well with the 

research objectives of this paper. The main workflow of the algorithm is as follows: 

A constant value,𝑓
(0)

(𝑥) is initially used to initialize the model. This constant is calculated by 

minimizing the loss function: 

𝑓
(0)

(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∑
𝑖=1
𝑁 𝐿(𝑦𝑖 , 𝜃) (3) 

In Eq. (3), θ is the parameter of the model, 𝐿(𝑦𝑖 ,𝜃) is the loss function, and 𝑦𝑖 is the true label of the 

training data. 

Then, the algorithm iteratively adds weak learners. For each iteration 𝑚, from 1 to 𝑀, the following 

steps are performed: 
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(1) Gradient and curvature calculation: Calculate the gradient and second-order derivatives for each 

data point under the current model to evaluate the curvature of the loss function. This allows the model 

predictions to be adjusted in the direction that reduces the overall loss, ensuring stable and efficient 

model updates: 

𝑔𝑚(𝑥𝑖) = [
∂𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

∂𝑓(𝑥𝑖)
]

𝑓(𝑥)=𝑓̂(m−1)
(𝑥)

 (4) 

ℎ̂
𝑚

(𝑥𝑖) = [
∂2𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

∂𝑓(𝑥𝑖)2
]

𝑓(𝑥)=𝑓̂(m−1)
(𝑥) 

(5) 

In equation (4),𝑥𝑖 denotes the ith data point, and 𝑔𝑚(𝑥𝑖) represents the gradient, which is the first-

order derivative of the loss function with respect to the current model prediction. It indicates the growth 

rate of the loss function at each data point. In Eq. (5), ℎ̂𝑚(𝑥𝑖) represents the second-order derivative of 

the loss function relative to the current model prediction, describing the rate of change of the gradient.  

(2) In the gradient boosting approach, our goal is to reduce the overall model prediction error by 

fitting a new weak learner. To this end, the new weak learner is fitted with the objective of minimizing 

the ratio of the negative value of the gradient to the second-order derivative. This method utilizes the 

gradient information to guide the learning process, effectively allowing the weak learner to optimize 

directly for error reduction. The specific mathematical expression is described as follows: 

𝜙̂𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜙∈𝛷∑𝑖=1
𝑁 1

2
ℎ̂𝑚(𝑥𝑖)[𝜙(𝑥𝑖) −

𝑔𝑚(𝑥𝑖)

ℎ̂𝑚(𝑥𝑖)
]2 (6) 

In equation (6).𝜙̂𝑚 represents the weak learner. 

(3) Update model parameters: the newly learned model 𝑓𝑚(𝑥) is added to the existing model by 

multiplying by the learning rate 𝛼. This step is cumulative, meaning that the output of each iteration 

builds upon the previous one: 

𝑓𝑚(𝑥) = α𝜙̂𝑚(𝑥) (7) 

𝑓(𝑚)(𝑥) = 𝑓(𝑚−1)(𝑥) + 𝑓𝑚(𝑥) (8) 

Ultimately, the XGBoost output is an accumulation of the models learned from all iterations: 

𝑓(𝑥) = ∑
𝑚=0
𝑀 𝑓

𝑚
(𝑥) (9) 

2.3.  LSTM (Long Short-Term Memory network) and GRU  

LSTM (Long Short-Term Memory networks) and GRU (Gated Recurrent Unit networks) are two types 

of recurrent neural networks that facilitate the analysis and prediction of time series through a multilayer 

network structure. LSTM was introduced by Hochreiter S. and Schmidhuber J. in 1997 [18], while GRU 

was developed by Cho K. et al. in 2014 [19]. 

Both LSTM and GRU are designed to effectively capture long-term dependencies in time series data 

by regulating the flow of information through the structure of "gates," which selectively remember and 

forget information. Unlike traditional and other machine learning methods that require manual feature 

engineering, LSTM and GRU can automatically extract useful features from raw time series data, 

capturing complex patterns and relationships. Furthermore, both networks enhance the learning 

capability of models by stacking multiple layers and can handle sequences of varying lengths to perform 

multi-step predictions. They are capable of being trained as end-to-end models that take a series of past 

observations and directly output future values. 

The gating mechanism of LSTM comprises three types of gates: the forgetting gate, which 

determines what information to discard from the cell state; the input gate, which decides what new 

information to add to the cell state; and the output gate, which controls the flow of information from the 
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cell state to the next hidden state. These gates work in tandem to enable LSTMs to process long 

sequences efficiently, avoiding the gradient vanishing problem that is common with traditional RNNs, 

thus maintaining long-term information dependence. 

GRU simplifies the gate structure by using only two gates compared to three in LSTM: the update 

gate and the reset gate. The update gate determines how much of the previous memory to retain while 

also controlling how much new input is incorporated into the current cell state. The reset gate decides 

whether to disregard previous hidden states, which allows the model to reset its memory effectively, 

aiding in capturing relevant dependencies within the data. 

Figures 1 and 2 schematically illustrate the structures of LSTM and GRU, respectively. 

  

Figure 1. LSTM structure Figure 2. GRU structure 

3.  Experimental 

3.1.  Experimental environment 

This experiment was conducted on a computer equipped with an Intel Platinum 8352V processor, which 

includes 16 virtual cores, and equipped with a GeForce RTX 4090 GPU. The programming language 

used was Python 3.10, and the deep learning framework employed was PyTorch 2.1.0. The interactive 

development environment utilized for this study was JupyterLab. 

3.2.  Experimental data set 

The experimental dataset used in this study was sourced from the Shenzhen Smart Meter Data 

Management Platform, after anonymizing the actual water consumption data from 20 residential districts 

in a region of Shenzhen. This dataset contains two types of readings—taken at intervals of 5 minutes 

and 1 hour—from 20 districts, which are classified into 20 groups according to the districts. For 

illustration, Fig. 3 and Fig. 4 show the hourly and five-minute water flow curves of Cell 1 for a certain 

week, respectively. 

  

Figure 3. Hourly Water Volume Curve for 

Subarea 1 

Figure 4. Water volume curve per 5 minutes for 

Subdivision 1 
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3.3.  Feature extraction 

To improve the prediction accuracy of XGBoost for time-series data, we extracted features from the 

traffic data in the original dataset and expanded the data dimensions to provide better a priori knowledge 

for time-series prediction. Specifically, we used the hourly dataset as the base dataset and conducted 

auxiliary feature extraction in terms of days and 5-minute intervals. For data pertaining to a specific day, 

we determined whether it was a legal holiday (including weekends), assigning the feature a value of 0 

if true, and 1 otherwise. This approach provides the model with direct information about the variations 

in holiday activities, which aids in accurately predicting the differences in flow between holidays and 

weekdays. For every 5-minute water consumption data point, we applied a differential transform to find 

its change value, then grouped these data by hour and used K-Means for clustering. This results in 

identifying different change trend characteristics of water consumption per hour, such as rising then 

falling, falling then rising, continuously falling, or rising. These features are crucial for predicting the 

flow changes in the subsequent hours or even longer. The feature extraction process is illustrated in 

Figure 5. 

 

Figure 5. Flowchart of feature extraction 

The MSLE (Mean Squared Logarithmic Error) loss of the model after K-Means clustering at different 

𝑘 values is shown in Table 2, with 𝑘=5 chosen for clustering in the experiment. The results of K-Means 

clustering after dimensionality reduction by PCA for the trend of hourly water flow in Cell 1 are shown 

in Figure 6 

Table 1. MSLE Loss of the model for different values of k 

k 2 3 4 5 6 7 8 

MSLE 

Loss 
0.8126 0.8144 0.8137 0.8100 0.8119 0.8133 0.8177 

 

Figure 6. Clustering of Water Use Trends in Subarea 1 
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3.4.  Assessment of indicators 

Since this task is a classical regression task in machine learning, two common regression metrics, 

namely mean logarithmic error and mean square error, were primarily selected for evaluation in this 

experiment: 

(1) Mean Squared Logarithmic Error (MSLE) focuses on the ratio of the predicted to true values, 

which can mitigate the impact of large errors and more strictly penalize the underestimation of the true 

value. It is especially suitable for scenarios where non-negative values are predicted, such as in water 

supply prediction tasks in this experiment. The calculation formula is: 

𝑀𝑆𝐿𝐸 =
1

𝑛
∑ (log(𝑦𝑖 + 1) − log(𝑦̂𝑖 + 1))2

𝑛

𝑖=1
(10) 

(2) Mean Squared Error (MSE) is a widely used evaluation metric for regression tasks, assessing 

model performance by calculating the average of the squares of the differences between the predicted 

and true values. This metric is suitable for time series forecasting tasks. The formula is: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
(11) 

In the above equations, 𝑦𝑖  and 𝑦̂𝑖  represent the true and predicted values of the ith sample, 

respectively, and 𝑛 is the total number of samples. 

3.5.   Comparative experiments 

To verify the advantages of the proposed model in terms of time series prediction accuracy, this study 

utilized different algorithmic models to conduct six sets of comparative experiments, employing the 

five-fold cross-validation method to evaluate the results based on two kinds of indicators. The results 

are presented in Table 1. The 1dCNN model includes three convolutional layers with convolutional 

kernel sizes of 9, 7, and 5, respectively. For the RNN, LSTM, and GRU models, each has three recurrent 

layers with 256 hidden units each. 

The experimental results indicate that the K-Means + XGBoost model proposed in this paper exhibits 

superior performance on the time series prediction task, achieving an MSLE Loss of 0.81008. 

Table 2. Comparative experimental results 

Model MSLE Loss MSE Loss Average training time per data set 

RF 0.93794 2485.520 197.5 seconds 

SVM 1.04408 2529.840 6.7 seconds 

1dCNN 0.87686 2563.826 659.0 seconds 

RNN 1.01097 2575.754 5884.8 seconds 

GRU 0.94311 2488.947 9235.2 seconds 

LSTM 0.82158 2439.376 9063.4 seconds 

XGBoost + K-Means 

Trends + Holiday Features 
0.81008 2433.839 13.8 seconds. 

3.6.  Ablation experiments 

The model presented in this paper incorporates holiday features from the dataset and hourly trend 

features clustered by K-Means, enhancing the original XGBoost model. To systematically evaluate the 

contribution of each feature to the prediction performance, we conducted ablation experiments by 

sequentially removing these features from the model and observed the specific impact on model 

accuracy by comparing performance before and after their removal. The results of these experiments are 

depicted in Table 3. 
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Table 3. Results of ablation experiments 

Model MSLE Loss MSE Loss 

XGBoost 0.94470 2470.79 

XGBoost+ Holiday Features 0.88831 2463.00 

XGBoost+ K-Means Trend 

Characterization 
0.88171 2451.30 

XGBoost + K-Means trend 

features + holiday features 
0.81008 2433.84 

From the ablation experiments, it is evident that the model which includes both the holiday feature 

and the water usage trend feature significantly reduces the prediction loss compared to the baseline 

model, which only uses the base features, and to the model which exclusively uses either the holiday or 

water usage trend feature. These results demonstrate that both holiday features and water usage trend 

features crucially enhance the accuracy of model predictions. 

4.  Conclusion 

This paper presents a time series prediction method leveraging feature fusion and XGBoost, utilizing 

water consumption data from 20 neighborhoods in Shenzhen. Initially, we employ a differential 

transform and the K-Means algorithm to cluster finer-grained time series data, identifying and grouping 

changing trends into trend features. Subsequently, holiday information is integrated as an additional 

feature to capture anomalous behaviors and pattern changes associated with these times. Experiments 

demonstrate that the proposed model significantly outperforms LSTM-like methods in terms of 

prediction accuracy and training efficiency. Specifically, compared to LSTM, our model reduces the 

MSLE prediction loss by 1.42% and training time by a factor of 655.8; compared to 1dCNN, it reduces 

MSLE prediction loss by 8.24% and training time by a factor of 46.8. Future research directions may 

include exploring dynamic and adaptive clustering algorithms to address the non-stationary nature of 

time series data and investigating the integration of external information such as economic indicators 

and social events to enhance model performance. 
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