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Abstract. This paper presents a summary of the progress of deep learning in the research of 

intelligent receivers and predicts its future development direction. First, the background of the 

era of intelligent receivers is introduced. With the rapid development of communication 

technology, intelligent receivers show insufficient flexibility, low accuracy, and spectral 

efficiency in detecting current radio signals. This is a challenge that is difficult to overcome in 

order to meet the needs of modern signal recovery. With the advent of artificial intelligence 

technologies such as deep learning, academia and industry began to explore the potential of 

applying these techniques to the field of communication receivers, leading to the emergence of 

intelligent receivers. This paper then introduces the fundamentals of wireless communication 

systems and deep learning neural networks, laying the groundwork for a deeper understanding 

of the subsequent content. Chapter 3 provides a comprehensive overview of the application of 

intelligent receivers in signal reception, including channel estimation, signal detection, 

modulation identification, demodulation and decoding. Finally, the paper considers the practical 

applications of intelligent receivers and speculates on their future development. 
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1.  Introductory 

The rapid advancement of communication technology has led to significant challenges for conventional 

receivers in signal detection. These challenges include an increase in signal types, the complexity of the 

channel environment, and the requirement of higher transmission rates and bit error rates. In the context 

of a multitude of input signals with diverse modulation and coding techniques, the detection accuracy 

and performance of conventional receivers are negatively impacted. Furthermore, traditional receivers 

are constrained by their limited ability to handle a wide range of carrier frequencies and modulation 

modes, which impairs their flexibility. Their anti-jamming capabilities are inadequate in the presence of 

strong interference or complex electromagnetic environments, and their utilization of spectrum 

resources is suboptimal, leading to constrained system capacity and transmission rates. In recent years, 

the development of artificial intelligence (AI) technology has opened up new avenues for the integration 

of communication receivers and AI. Deep learning, a subfield of AI, employs the construction and 

training of deep neural networks to effectively predict or classify results by learning complex patterns 

and features from a large amount of data. In the field of communication, the incorporation of deep 

learning in receivers can significantly enhance the accuracy and flexibility of signal processing. Figure 
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1 illustrates the intelligent receiver model resulting from the integration of a deep learning neural 

network model with a conventional receiver. 

Nevertheless, there are several limitations associated with deep learning-based intelligent receivers. 

These include high algorithmic complexity, a limited scope of application [1], a lengthy training time 

for network models, a high threshold for practical application, and so forth. There is, therefore, 

considerable scope for further improvement. At present, the combination of intelligent receivers with 

multiple-input multiple-output (MIMO) systems, chaotic communications, and non-orthogonal multiple 

access (NOMA) technology has become a subject of considerable research interest. As the fifth 

generation of mobile communication continues to develop, the MIMO system is becoming increasingly 

sophisticated. It is anticipated that AI will be incorporated into the MIMO system to enhance the 

performance of the communication system [1-3]. In the field of chaotic communication, intelligent 

receivers can learn and extract the correlation of received signals, thereby improving the reliability of 

demodulation [4]. The integration of intelligent receivers into NOMA systems has been demonstrated 

to enhance both the BER performance and system robustness. This paper will present a summary and 

analysis of the research related to intelligent receivers based on deep learning, as well as a prediction of 

its future development prospects. The remainder of this paper is organized as follows: Chapter 2 

introduces the theoretical foundation of wireless communication and neural networks. Chapter 3 

describes the research progress of intelligent receivers based on deep learning. Chapter 4 introduces the 

practical application of intelligent receivers. Chapter 5 discusses the opportunities and challenges of 

intelligent receivers and looks forward to their future development. 
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Figure 1. Schematic diagram of the intelligent 

receiver 

Figure 2. Block diagram of digital 

communication system structure 

2.  Theoretical foundations of wireless communications and neural networks 

2.1.  Wireless communication systems 

Communication represents a crucial instrument for the exchange of information within human society. 

In light of the ongoing evolution of technology, a plethora of communication modalities have emerged. 

These include wired communications, such as fiber-optic communications, coaxial cables, and 

telephone lines, and wireless communications, such as satellite communications and cellular mobile 

communications. Wireless communication systems can be classified into two categories: analog 

communication systems and digital communication systems. This classification is based on the type of 

information transmitted. As illustrated in figure 2, a typical digital communication system, for instance, 

comprises three principal components: transmitter, channel, and receiver, as delineated below.  

2.1.1.  Transmitters 

The transmitter is primarily responsible for the processes of coding, encryption, and modulation of the 

source signal, which are employed to convert it into a signal that is suitable for transmission over the 

channel. In a digital communication system, the transmitter comprises the following components: the 
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source, source coding, encryption, channel coding, and digital modulation. The particular configuration 

is illustrated in Figure 2. 

2.1.2.  Signal path 

The term "channel" is used to describe the path or route that a signal takes as it is transmitted from the 

transmitter to the receiver. There are two main types of channels: wired and wireless. A transmission 

channel is the medium through which a signal is conveyed from a transmitter to a receiver. Transmission 

channels can be classified as either wired or wireless. In mobile communications, the presence of noise 

sources in the channel may result in the incorrect reception of the signal. 

2.1.3.  Receivers 

The principal function of the receiver is to receive the signals transmitted over the channel and perform 

processes such as demodulation and decoding, thereby restoring the signals to their original information. 

The receiver structure depicted in Figure 2 comprises five principal components: digital demodulation, 

channel decoding, decoding, source decoding, and signal lodging. 

2.2.  Neural networks and deep learning 

A neural network is a computational system inspired by the biological nervous system and consists of a 

large number of interconnected artificial neurons. In contrast, deep learning is a machine learning 

method that employs deep neural networks for the purposes of learning and model construction. As the 

foundation of deep learning, neural networks achieve complex tasks through multi-level information 

transfer and learning. As deep learning is based on neural network models, the following section will 

describe several typical neural network models. 

2.2.1.  Convolutional neural network (CNN) 

CNN is a feed-forward network, which is particularly suited to the processing and analysis of image 

data. In a feed-forward network, each neuron is divided into different groups according to the order of 

receiving information. Each group is regarded as a neural layer, and the information is passed down 

through the neural layers layer by layer. The information of the whole neural network is passed in one 

direction, without reverse transmission. A convolutional neural network is structured with an input layer, 

a convolutional layer, a pooling layer, and a fully-connected layer, which are stacked on top of each 

other. A number of models are currently in use, including AlexNet, GoogleNet, ResNet, and others. The 

specific structure of convolutional neural networks is described in the following section. 

2.2.2.  Recurrent neural network (RNN) 

RNN is a class of neural networks designed for processing sequence data. In contrast to feed-forward 

neural networks, RNNs possess a memory function for sequences through recurrent connections, 

whereby the input of the previous step is treated as the input of the current step. RNNs are predominantly 

employed in the domains of natural language processing, time series processing, and speech recognition. 

Figure 3 depicts the fundamental structure of an RNN, which comprises an input layer, a hidden layer, 

and an output layer. In RNN, the data from the previous hidden layer can be trained in the subsequent 

hidden layer, in conjunction with the data from the subsequent input layer. 
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Figure 3. RNN network structure 
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The original RNN is susceptible to gradient explosion and gradient vanishing when processing long 

sequence signals. Consequently, researchers have proposed variants of RNN, with the most notable 

examples being Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).   

2.2.2.1.  LSTM 

LSTM is a specific type of recurrent neural network, comprising Input Gate, Forget Gate, and Output 

Gate, as illustrated in Fig. 4. The distinctive gating structure of LSTM enables it to overcome the 

limitations of traditional RNNs in processing long sequences, addressing the challenges of gradient 

vanishing and gradient explosion. This has led to LSTM's success in a range of tasks requiring the 

memorization of long-term dependencies. 
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Figure 4. LSTM structure             Figure 5. GRU structure 

2.2.2.2.  GRU 

GRU is a neural network model for processing sequence data. It consists of a reset gate, an update gate, 

and a simpler gating mechanism than LSTM. GRU performs better in tasks that are computationally 

efficient and insensitive to time dependence. It is suitable for some short-term time series prediction 

tasks. Figure 5 illustrates the fundamental structure of GRU. 

2.2.3.  Graph Neural Network (GNN) 

A GNN is a neural network that is designed to learn graph-structured data and uncover information such 

as features in graph-structured data. In the field of signal detection and demodulation, the article [5] 

proposed the Adaptive Visibility Graph (AVG) algorithm, which maps a time series into a graph and 

employs a graph neural network as a classifier. This is followed by the construction of an end-to-end 

AVGNET, which assists in signal detection and demodulation. 

2.2.4.  Emerging Neural Network Models 

The aforementioned CNN/RNN/GNN models are limited in their ability to capture local relationships. 

In contrast, the Transformer model, proposed in 2017, effectively addresses this issue. The core of the 

Transformer lies in the self-attention mechanism, which enables it to learn long-distance features 

between data effectively. The fundamental structure of the Transformer model is illustrated in figure 6. 

The Transformer has been instrumental in propelling the rapid advancement of natural language 

processing and computer vision. Nevertheless, the current generation of Transformer-based models still 

necessitates the use of high-end graphics cards with larger memory for training and testing, which 

significantly constrains their potential for widespread deployment. In order to overcome the 

aforementioned shortcomings and enhance the efficacy of the models, a plethora of novel models 

predicated on sparse attention mechanisms or novel neural network paradigms have been proposed. 

Among these, state-space models (e.g., Mamba) have emerged as a subject of particular interest.   

The State Space Model (SSM) is a mathematical model that describes the behavior of a dynamic 

system. It employs a set of first-order differential equations (for continuous-time systems) or difference 

equations (for discrete-time systems) to represent the evolution of the internal states of the system and 
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another set of equations to describe the relationship between the states and the outputs of the system. 

The SSM allows for parallelism in training and applies a recursive form of linear complexity reasoning. 
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          Figure 6. Transformer structure         Figure 7. Mamba structure diagram 

In contrast to Transformer, Mamba employs a linear scalability of the sequence length of the state-

space model, while simultaneously implementing the modeling capabilities of Transformer. The latter's 

structure is depicted in figure 7. By means of selective SSM, Mamba is capable of filtering irrelevant 

information in order to facilitate the processing of sequences in an efficient manner. From a hardware 

perspective, Mamba employs optimized parallel algorithms for hardware. This enables Mamba to 

effectively increase the computation rate and reduce the memory requirement. Concurrently, Mamba is 

devoid of conventional attention and multilayer perceptron (MLP) modules, a simplification that enables 

the Mamba architecture to scale with the sequence length.     

3.  Advances in deep learning-based intelligent receivers 

The preceding chapter established a theoretical foundation and existing research on the traditional 

receiver. This chapter will examine the current state of the traditional receiver, identifying areas for 

improvement. 

The traditional receiver has several limitations. It studies a single type of signal, typically serial 

demodulation and decoding. Its configuration is fixed, limiting its flexibility. It is unable to adapt to 

complex interference. Its accuracy in detecting signals is also a significant area for improvement. 

Consequently, research pertaining to intelligent receivers based on deep learning has garnered increasing 

interest from researchers. This chapter will provide a comprehensive overview of the research progress 

related to deep learning-based intelligent receivers from multiple perspectives. The aim is to offer a 

valuable reference for future research, as described below. 
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3.1.  Channel estimation 

Channel estimation is the process of measuring and estimating the characteristics of a channel at the 

receiver side with the objective of obtaining channel parameters for signal processing and compensation. 

Conventional channel estimation methodologies posit that the receiver possesses absolute Channel State 

Information (CSI), yet in reality, this assumption is challenging to achieve due to noise and guide 

frequency contamination. 

The majority of existing methods for enhancing detection performance typically result in a significant 

increase in computational complexity. A new generation of deep learning-based channel estimation 

methods has emerged, which can enhance detection performance while reducing system complexity. In 

MIMO systems, the uplink and downlink channels of Frequency Division Duplexing (FDD) systems 

exhibit weak reciprocity due to disparate operating frequencies, rendering it more challenging for the 

base station to obtain the channel state information (CSI). In contrast, the article [6] employs an 

intelligent receiver to map the uplink cluster information fed back to the base station by the mobile user, 

subsequently obtaining the downlink channel CSI. He et al. proposed a denoising-based approximate 

message passing (LDAMP) network based on the approximate message passing (AMP) algorithm. Each 

layer of the LDAMP network comprises a feed-forward denoising convolutional neural network 

(DnCNN), a scatter estimator, and a correlation coefficient. Figure 8 depicts the architecture of the 

LDAMP layer [7]. 

Previous studies have proposed the LampResNet network, which combines an iterative AMP 

algorithm with a residual learning network (ResNet) to address the channel estimation challenge for 

millimeter-wave massive MIMO in the beam domain [8]. In the field of mobile communications, where 

high-speed moving objects are subject to Doppler shift during signal reception, the SBGRU estimator 

introduced in the literature [9] integrates the RNN architecture with the sliding window mechanism, thus 

demonstrating excellent robustness in dealing with variable-length transmitted symbols, diverse 

frequency-guided overheads, and changing channel statistical characteristics. 

3.2.  Signal detection 

The objective of signal detection is to distinguish between the original signal and the received signal. 

As the modulation and transmission of signals become increasingly complex, the interference and noise 

encountered in the transmission process exhibit randomness, thereby increasing the uncertainty of signal 

transmission. The limitations of traditional receivers in terms of accuracy and efficiency of signal 

detection make it challenging to meet the requirements of signal detection in modern communications. 

Consequently, contemporary research is actively investigating novel methodologies for integrating 

signal detection technology with deep learning. In the field of wireless communications, deep learning-

based receivers are capable of extracting correlation features between received signals, thereby 
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enhancing signal detection from noise. An OAM-DeepSIC detector has been proposed for the purpose 

of detecting orthogonal angular momentum signals in the presence of mixed modal interference. This 

intelligent receiver employs a hybrid approach, integrating the strengths of model-driven and data-

driven techniques, to achieve a notable reduction in the false symbol rate [10]. In wireless 

communication, the use of chaotic signals for modulation can enhance the anti-interference performance 

of communication systems. However, the energy detection scheme of chaotic signals at the receiver side 

has limitations on Rayleigh channels. To address this problem, Zou et al. proposed a GRU-aided initial 

condition index chaotic keying system (GRU-aided initial condition index CSK system, GRU-ICI-CSK). 

The fundamental configuration of the GRU-ICI-CSK system is illustrated in figure 9. 

In comparison to the conventional detection methodology, this approach exhibits robust learning and 

classification abilities, rendering it an efficacious solution for low-power, short-range wireless 

transmission [11]. Direct Sequence Spread Spectrum (DSSS) systems are employed extensively in civil 

and military communications due to their exceptional anti-jamming capabilities and low interception 

rates. Nevertheless, DSSS is subject to limitations in terms of power spectral density and detection. The 

article[12] proposed two distinct detection schemes: a convolutional neural network (CNN)-based DSSS 

detection scheme and a hybrid CNN-correlation (CORR) based DSSS detection scheme. The results 

demonstrate that both signal detection schemes outperform the autocorrelation-based detection approach. 

The detection of weak signals has consistently been a significant challenge in the field of signal detection. 

Traditional blind detection methods for weak signals have demonstrated limited effectiveness in low 

signal-to-noise ratio conditions. In response, Dong et al. proposed a spatial spectrum-based LSTM weak 

signal detection approach. The efficacy of this approach is demonstrably superior to that of radial basis 

function neural network, max-min eigenvalue, and energy detection[13]. 

3.3.  Signal Modulation Classification 

Deep learning is a widely utilized technique in the field of automatic modulation classification (AMC), 

which has been demonstrated to enhance the accuracy of AMC. 

 

Figure 10. Overall process of AMC based on deep learning 

In contrast to traditional likelihood and feature-based methods, deep learning-based AMC is capable 

of classifying complex data with greater accuracy and does not necessitate a significant investment in 

human resources [14-15]. The article [15] proposed an automatic modulation classification relation 

network (AMCRN) for the study of AMC with small samples. Kim et al. proposed a convolutional 

neural network (CNN) based hybrid deep learning of signals and images and applied it to signal 

modulation classification. The model exhibits an enhancement in signal-to-noise ratio and prediction 

accuracy in comparison to the edge convolutional neural network, autocorrelation bootstrap network, 

and lightweight convolutional neural network[16]. 

3.4.  signal Demodulation 

In the context of communication systems, signal demodulation is the process of extracting the original 

information signal from the received modulated signal. Multiple Quadrature Amplitude Modulation (M-

QAM) is a modulation technique that is widely used in digital communication systems due to its high 

spectral efficiency, which is limited only by the channel noise level and linearity. While conventional 

M-QAM demodulation employs coherent demodulation, the article [17] proposes to utilize the 

robustness of neural networks to demodulate M-QAM signals. Signal demodulation in the field of 

chaotic communication is also a topic of significant interest in contemporary research. A proposed 

method for demodulation in a multilevel code-shift M-variant differential chaotic keying system 
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involves the construction of multiple recursive LSTMs and their connection in series with multiple FCLs 

to form a Deep Neural Network (DNN). This approach is intended to facilitate the recovery of 

information[18].The fundamental configuration of the DNN-aided intelligent receiver is illustrated in 

figure 11 

  

Figure 11. Smart DNN-assisted receiver structure 
Figure 12. DNN structure oriented to smart 

detectors 

In contrast to the conventional single-mode AMC based on CNNs, Qi et al. proposed a Waveform-

Spectrum Multimodal Fusion (WSMF) method based on Deep Residual Network (DRN) with the 

objective of achieving the fusion of multimodal information from multiple transform domains in order 

to obtain a more discriminative feature. In comparison to the conventional CNN-based AMC approach 

that utilises unimodal information, WSMF demonstrates enhanced performance in the context of higher-

order digital modulation types[19]. 

3.5.  Signal Decoding And Recovery 

The process of decoding is the restoration of a signal or data from a coded form to its original information. 

In MIMO systems, article [20] proposed a DNN-based receiver architecture for spatial media 

modulation—MIMO (SMBM-MIMO) systems, which is detected in an end-to-end manner to recover 

the transmitted symbols directly with an offline training process. 

The results demonstrate that this deep neural network (DNN)-based receiver structure exhibits 

enhanced performance and throughput compared to the maximum likelihood (ML) receiver based on 

linear minimum mean square error (LMMSE) channel estimation in the context of multiple receiving 

antennas. In the context of spherical decoding algorithms, related studies have proposed a deep learning-

based spherical decoding algorithm, which has the advantage of low computational complexity 

compared to the traditional spherical decoding algorithm[21]. The joint deep learning approach to signal 

detection and channel decoding exhibits enhanced learning capabilities, rendering it a promising 

solution for signal decoding. The article [22] aims to address the joint noncoherent differential detection 

and channel decoding problem by constructing a deep neural network (DNN) composed of long short-

term memory (LSTM) units. This approach is expected to provide faster processing speeds and 

recovered accuracy. 

3.6.  Current Status of Research on Intelligent Reception of OFDM Communication Signals 

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier system for high-speed wireless 

channels. However, its channel orthogonality is easily lost due to rapidly changing channel 

characteristics, which results in inter-channel inter-ference (ICI). In order to overcome ICI and improve 

the reliability of intelligent receivers, two solutions have been proposed: orthogonal frequency division 

multiplexing with index modulation (OFDM-IM)[23] and direct modulation combined with OFDM-IM 

(DM-OFDM-IM)[24].The article [25] proposed an index-bit-detection neural network with a 

modulation parameter-independent structure (IBDNN-MPI), a model that can be configured with 

different configuration parameter MPs.  

3.7.  Current status of research on intelligent reception of NOMA communication signals 

NOMA has garnered significant interest in the context of fifth-generation and future mobile 

communication systems. Xie et al. put forth a novel deep learning-assisted receiver for NOMA joint 
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signal detection, which is capable of simultaneously performing channel estimation, equalization, and 

demodulation functions. In comparison to the conventional NOMA signal detection approach, the 

utilization of the proposed innovative deep learning receiver for signal processing in the Tap Delay Line 

(TDL) channel model exhibits enhanced feasibility and resilience [26]. In the article [27], a deep 

learning-based joint channel estimation and signal detection method is proposed for the multiuser 

Orthogonal Frequency Division Multiplexing with Non-Orthogonal Multiple Access (OFDM-NOMA) 

scheme under Rayleigh fading channel conditions. The DL-based detector (DLD) proposed in the article 

is capable of performing symbol detection based on the guide frequency and data signals without the 

necessity for additional channel estimation and interference cancellation. This renders it more 

advantageous in terms of BER performance and robustness. Furthermore, it can be applied to any fading 

conditions without the need for re-training, which is a promising feature. 

4.  Intelligent Receivers In Practice 

Conventional receivers are constrained by fixed algorithms and inadequate anti-jamming capabilities, 

which impede their suitability for future communications. Intelligent receivers integrate advanced 

hardware and intelligent software algorithms to optimize signal processing in complex environments, 

offering a wide range of potential applications. In light of the advancements in technology, intelligent 

receivers have become an indispensable component of modern communication systems. The following 

sections will discuss several major applications of intelligent receivers in practice. 

4.1.  Wireless Communication Field 

In the field of wireless communications, the introduction of smart receivers has the potential to 

adaptively handle complex channel conditions, thereby enhancing the reliability of data transmission. 

In the context of the Internet of Things (IoT), the deployment of smart receivers can facilitate the 

efficient processing of signals from a multitude of communication protocols and dynamic environments, 

thereby enhancing network connectivity and stability. 

4.2.  Satellite communications area 

In the field of Earth observation, communication between satellites and ground-based stations is a 

necessity. However, this channel is more complex and susceptible to various external factors, including 

weather, atmospheric conditions, and other variables. The use of intelligent receivers can enhance the 

accuracy and reliability of data transmission. In the context of the global satellite navigation system, the 

deployment of intelligent receivers can enhance signal processing capabilities and improve positioning 

accuracy. 

4.3.  Military and defense field 

An intelligent receiver can enhance the detection and tracking accuracy of the radar on the target, 

augment the anti-jamming capability, and, in the context of complex electromagnetic environments 

associated with electronic warfare, facilitate real-time detection of the other party's communication 

interference, thereby enhancing the anti-jamming ability. 

4.4.  Automated Driving and Smart Furniture Sectors 

In terms of in-vehicle communication, intelligent receivers can facilitate low-latency, high-reliability 

in-vehicle communication. Furthermore, intelligent receivers can integrate data from different sensors 

to enhance the safety and decision-making ability of autonomous driving[28]. Figure 13 presents the 

fundamental model of the OTFS system in the field of telematics. 

In the field of smart home technology, intelligent receivers can enhance the coverage and stability of 

wireless networks, thereby facilitating seamless operation and connection of various smart home devices. 

Conversely, the efficient transmission of data can enhance the real-time monitoring capability of home 

security systems. 
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Figure 13. Use of OTFS in Telematics 

In conclusion, intelligent receivers are capable of adaptively optimizing signal processing and data 

transmission in complex and changing environments through the use of deep learning and other 

advanced artificial intelligence technologies, and have broad application prospects. The deployment of 

these technologies will markedly enhance the efficiency, reliability, and intelligence in a multitude of 

fields. 

5.  Summary and outlook 

This paper presents a review of the application and research progress of deep learning-based intelligent 

receivers in wireless communication systems. As communication technology has developed, the amount 

of information to be processed by receivers has increased exponentially, and the requirements for 

accuracy and processing speed have become more and more stringent. In parallel, the exponential 

growth of deep learning technology has made it possible to integrate communication and deep learning. 

This paper introduces the fundamental concepts of wireless communication systems and deep learning 

neural networks, which provide the theoretical basis for intelligent receivers based on deep learning 

technology. Subsequently, Chapter 3 of this paper provides an overview of the current research status 

of intelligent receivers in the field of signal reception. This includes an examination of the processes of 

channel estimation, signal detection, modulation identification, demodulation, and decoding. From these 

studies, it can be concluded that the intelligent receiver is capable of efficient signal reception in the 

presence of complex interference conditions through the integration of deep learning technology. This 

technology plays a pivotal role in the advancement of future communication systems. 

Nevertheless, the current development of intelligent receivers is still in its infancy. Its algorithmic 

complexity and application scenarios have certain limitations, the law of learning strategy is not yet 

clear [29], and part of the smart receiver model is still in the stage of simulation and experimentation. 

Further research is therefore required to ascertain the applicability of intelligent receivers in actual 

systems. Consequently, there is considerable scope for further development of intelligent receivers, 

including their deployment in smart homes, 6G networks and national defense and security. Future 

research may further optimize the model structure of intelligent receivers and enhance their real-time 

and robustness in order to cope with more challenging communication scenarios. 
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