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Abstract. This study explores the application of multi-armed bandit (MAB) algorithms in 

dynamic pricing of crops, with a focus on evaluating the adaptive upper confidence bound 

(asUCB) and Thompson Sampling (TS) algorithms. Through simulation experiments on 

historical data, the study analyzed the performance of these algorithms in fitting actual market 

price trends and responding to future price fluctuations. The results indicate that the asUCB 

algorithm performed particularly well in both the training dataset and simulation tests, 

demonstrating low mean squared error (MSE) and minimal cumulative regret, reflecting its rapid 

convergence and stable pricing capabilities. In contrast, although the TS algorithm initially 

performed slightly less effectively, it demonstrated unique advantages in dealing with market 

volatility due to its strong adaptability. This study demonstrates the potential application of MAB 

algorithms in dynamic pricing, providing valuable insights for pricing strategies in the 

agricultural product market. 
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1.  Introduction 

The application of multi-armed bandit algorithm in dynamic pricing has become a hot topic in academia 

and industry in recent years. With the development of internet technology and big data analysis 

capabilities, dynamic pricing strategies have been widely applied in various fields, from high-speed train 

tickets to fresh products, from airline tickets to automobile inspection services. As an effective online 

learning method, the multi-armed bandit algorithm has shown great potential in handling dynamic 

pricing problems. This paper will provide a review of recent related studies and discuss the rationality 

and application prospects of the multi-armed bandit algorithm in dynamic pricing. 

Firstly, the multi-armed bandit algorithm has shown excellent performance in dealing with demand 

uncertainty. In their study on dynamic pricing of high-speed train tickets, Bi Wenjie and Chen Gong 

built a multi-stage decision-making model and designed a DQN framework based on deep reinforcement 

learning, while the demand function was unknown [1]. Their study showed that this method could 

accurately capture demand information and make flexible adjustments to decision-making in different 

states, resulting in a 4.58% higher revenue than the optimal fixed price strategy in a random demand 

environment. Similarly, Zhang Yifan used a method based on the multi-armed bandit (MAB) model 

when studying dynamic pricing of niche products [2]. He proposed an algorithm based on UCB 

improvement and another based on a Bayesian framework, which performed well in simulation 

environments and had some robustness to the distribution changes and random risk of real data. These 
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studies show that the multi-armed bandit algorithm can effectively handle the uncertainty and dynamic 

changes in demand, providing more precise pricing strategies for enterprises. 

Secondly, the multi-armed bandit algorithm has shown its advantages in handling high-dimensional, 

complex dynamic pricing problems. Bi Wenjie and Zhou Yubing modeled the fresh product joint 

inventory control and dynamic pricing problem as a Markov decision process and designed an algorithm 

based on deep reinforcement learning [3]. Their method effectively solves the dimensionality disaster 

problem and is more adaptable to the complex and variable real environment, with stronger adaptability 

and generality. This method takes into account the randomness of product shelf life, time-varying state 

transition functions, and the influence of inventory status on customer retention price, making the model 

more in line with reality. Similarly, Fang Chao and others adopted an online learning method when 

studying the dynamic selection strategy of new product development project portfolios, and learned the 

project revenue information in real time through Bayesian updating [4]. Their research shows that the 

dynamic model performs better than the static model in highly uncertain environments. 

Moreover, the multi-armed bandit algorithm also exhibits unique advantages in handling strategic 

consumer behavior. Bi Wenjie and Chen Meifang proposed a non-parametric Bayesian algorithm that 

combines Gaussian process regression and Thompson sampling to study the dynamic pricing problem 

faced by retailers simultaneously facing demand uncertainty and strategic consumers [5]. Their research 

found that, contrary to common belief, retailers' revenue is higher when strategic consumers exist, and 

it increases as consumers' patience increases. This may be because retailers explore optimal prices more 

extensively in the presence of strategic consumers. This finding provides a new perspective for 

understanding consumer behavior and formulating dynamic pricing strategies. 

However, the application of the multi-armed bandit algorithm in dynamic pricing also faces some 

challenges. For example, Tang Jue et al. showed that consumer loyalty has a significant impact on 

pricing strategies [6]. For short-sighted consumers, the equilibrium pricing of the seller is influenced by 

both the transaction time and consumer loyalty; while for strategic consumers, the equilibrium pricing 

of the seller is not affected by the transaction time, but is affected by the transaction period and consumer 

loyalty. This complex dynamic relationship may increase the difficulty of the multi-armed bandit 

algorithm. Similarly, Zhang Chen and Tian Qiong studied that in the online pricing of airline tickets, 

factors such as passenger loyalty level and the number of competitors would affect the airline's channel 

selection and pricing strategy. The complexity of these factors may pose challenges to the multi-armed 

bandit algorithm [7]. 

Moreover, the multi-armed bandit algorithm faces challenges in handling dynamic pricing problems 

under limited resource constraints. Ma Shuangfeng and Guo Wei studied the rate control and dynamic 

pricing problem in a serial queue system under limited resource constraints [8]. Their study shows that 

the optimal price is not always increased as the number of customers in the queue increases. When the 

waiting cost of customers is high and the number of customers at a certain service counter is large, the 

price needs to be lowered first to attract customers, and then gradually increased. This complex dynamic 

relationship may require a more complex multi-armed bandit algorithm to handle. 

Another noteworthy issue is the impact of consumer time preference and product quality information 

update on dynamic pricing. Xu Minghui et al. showed that consumer perceived quality and strategic cost 

affect their purchase strategy and lead companies to implement different dynamic pricing strategies [9]. 

More interestingly, they found that the improvement of review information accuracy is not always 

beneficial to companies. When both the consumer's strategic cost and perceived quality are high, even 

more accurate review information can cause both a decline in the firm's profits and a reduction in 

consumer surplus. This complex dynamic relationship places higher demands on the multi-armed bandit 

algorithm. 

The reference price effect is another important factor to consider in dynamic pricing. Feng Zibai 

modeled the random evolution of reference prices using a stochastic differential equation and modeled 

the dynamic pricing problem as a random optimal control problem at an infinite time horizon [10]. His 

research showed that when consumers receive new price information faster, the expected stable state 

reference price may increase; when the reference price effect is stronger, the variance of the stable state 
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reference price may decrease. This complex dynamic relationship may require more complex multi-

armed bandit algorithms to handle. 

Finally, Cui Zibin's research reminds us that in a competitive environment, the impact of consumer 

learning on the firm's pricing strategy is complex [11]. For example, when the proportion of socially 

learning consumers increases, competing firms should reduce product differentiation, but revenue will 

increase. This complex competitive dynamic may require more complex multi-armed bandit algorithms 

to handle. 

Despite these challenges, the application prospects of the multi-armed bandit algorithm in dynamic 

pricing are still broad. Liu Xu's demand-based dynamic pricing algorithm for perishable goods, which 

utilizes the potential of the multi-armed bandit algorithm, demonstrates that the algorithm can estimate 

the demand function by optimizing the optimal price and price range in each learning stage, resulting in 

a smaller difference between the actual maximum yield obtained through learning and the theoretical 

value under different price sensitivity levels [12]. More importantly, the algorithm performs better in 

large-scale scenarios, proving the necessity of fully demand-based learning for perishable goods. 

In summary, the application of the multi-armed bandit algorithm in dynamic pricing shows great 

potential. It can effectively handle the uncertainty and dynamic changes in demand, adapt to the complex 

and changing real environment, and handle strategic consumer behavior. However, it also faces 

challenges such as handling consumer loyalty, limited resource constraints, consumer time preferences, 

reference price effects, and competitive environments. Future research should focus on solving these 

challenges to further improve the applicability and effectiveness of the multi-armed bandit algorithm in 

dynamic pricing. At the same time, combining the multi-armed bandit algorithm with advanced 

technologies such as deep learning and reinforcement learning may lead to more innovative solutions. 

In summary, the multi-armed slot machine algorithm's application in dynamic pricing is reasonable and 

has broad development prospects. 

2.  Research Design 

This study aims to evaluate the performance of multi-armed bandit (MAB) algorithms, specifically the 

adaptive upper confidence bound (asUCB) and Thompson Sampling (TS), in crop pricing strategies. 

The focus is on assessing whether these algorithms can effectively fit historical real data and 

demonstrate robust pricing strategies in simulations. 

2.1.  Algorithm Selection and Model Design 

This study employs two classic MAB algorithms: asUCB and TS. The asUCB algorithm adapts to 

decision-making challenges in uncertain environments by dynamically adjusting confidence intervals, 

particularly excelling in handling significant price fluctuations. This method can real-time balance the 

ratio between exploration and exploitation to pursue optimal pricing strategies. The TS algorithm is a 

probabilistic distribution model established on Bayesian inference principles, designed to determine the 

best pricing strategy by analyzing sample data. It excels at optimizing the decision-making process 

through continuous learning iterations, demonstrating its capability to progressively converge to the 

optimal solution in the face of uncertainty. Below are the specific implementation details for each 

algorithm: 

During the model construction process, a simulated agricultural product market scenario was created. 

In this scenario, retailers adopted the asUCB and TS strategies, dynamically adjusting purchase prices 

to maximize profits from past data, and used a simulated environment to verify the actual efficacy of 

their pricing mechanisms. The dataset was systematically divided into a training subset and a simulation 

subset, with the former supporting the learning and adaptation process of the algorithms, and the latter 

assessing the generalization ability of the algorithms on new data. 

2.1.1.  Implementation of the UCB Algorithm 

def UCB_algorithm(num_rounds, number_of_arms, B=4): 

    cumulative_regret = np.zeros(num_rounds) 
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    arm_counts = np.zeros(number_of_arms) 

    arm_rewards = np.zeros(number_of_arms) 

    for t in range(number_of_arms): 

        reward = calculate_reward(t) 

        arm_rewards[t] += reward 

        arm_counts[t] += 1 

        cumulative_regret[t] = regret(t, t) 

    for t in range(number_of_arms, num_rounds): 

        ucb_values = arm_rewards / arm_counts + B * np.sqrt(np.log(num_rounds) / arm_counts) 

        arm = np.argmax(ucb_values) 

        reward = calculate_reward(arm) 

        arm_rewards[arm] += reward 

        arm_counts[arm] += 1 

        cumulative_regret[t] = regret(t, arm) + cumulative_regret[t - 1] 

    return cumulative_regret 

During the operation of the UCB algorithm, at each time step, the confidence intervals (ucb_values) 

of each arm are reassessed, and the arm with the highest confidence interval value is selected. By 

continuously accumulating the rewards received and the frequency of selections for each arm, the 

algorithm dynamically harmonizes the relationship between exploring new opportunities and exploiting 

known advantages, achieving an efficient balance between the two. 

2.1.2.  Implementation of the TS Algorithm 

def TS_algorithm(num_rounds, number_of_arms, B=4): 

    cumulative_regret = np.zeros(num_rounds) 

    arm_counts = np.ones(number_of_arms) 

    arm_rewards = np.zeros(number_of_arms) 

    for t in range(number_of_arms): 

        reward = calculate_reward(t) 

        arm_rewards[t] += reward 

        cumulative_regret[t] = regret(t, t) 

    for t in range(number_of_arms, num_rounds): 

        theta = np.random.normal(arm_rewards / arm_counts, B / (2 * np.sqrt(arm_counts))) 

        arm = np.argmax(theta) 

        reward = calculate_reward(arm) 

        arm_rewards[arm] += reward 

        arm_counts[arm] += 1 

        cumulative_regret[t] = regret(t, arm) + cumulative_regret[t - 1] 

    return cumulative_regret 

In the operational mechanism of the TS algorithm, at each time step, a normally distributed value 

\(\theta\) is generated for each arm, and the arm with the highest \(\theta\) value is selected for action. 

This algorithm progressively optimizes the decision-making process by continuously updating the 

reward feedback and selection frequency of each arm, gradually converging to the optimal solution. 

2.2.  Experimental Setup 

The data splitting method is as follows: We use the early part of the actual historical data to construct 

the training set, aiming to provide learning material for the asUCB and TS algorithms so they can master 

past price trends and derive the best bidding strategies; the later part of the historical data is used as the 

simulation set to assess the effectiveness of the bidding strategies established during the training phase 

in future market conditions. 
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2.3.  Data Processing and Generation Method 

By extracting and processing historical crop price records, we divided the dataset into training and 

simulation testing parts, aiming to ensure that the model not only fits within a theoretical framework but 

also validates effectively in a simulated market environment. The algorithm iteratively tunes the pricing 

strategies to achieve optimal model fitting and tests the effectiveness of these strategies in the simulation 

scenario. 

2.4.  Model Validation and Evaluation 

During the training phase, the optimal choices (i.e., the best product or price) of each algorithm are 

identified through the accumulated feedback. Specifically, the asUCB algorithm adopts the criterion of 

maximizing confidence intervals to determine the optimal option; the TS algorithm, on the other hand, 

selects the optimal arm based on maximizing the success rate. 

 best_arm_ucb = np.argmax(ucb.values) 

best_arm_ts=np.argmax(thompson_sampling.successes/(thompson_sampling.successes+thompson

_sampling.failures)) 

We apply the optimal strategy identified during the training phase to the simulated dataset to predict 

the performance of the price variable \(z\) in this simulated scenario. 

test_predictions_ucb = test_data['product'].apply(lambda x: optimal_rewards_dict[best_product_ucb] 

if x == best_product_ucb else 0) 

  test_predictions_ts = test_data['product'].apply(lambda x: optimal_rewards_dict[best_product_ts] 

if x == best_product_ts else 0) 

2.5.  Selection of Evaluation Criteria 

When assessing model performance, we adopt Mean Squared Error (MSE) as the core evaluation 

parameter to judge its adaptability on the test dataset. MSE quantifies by calculating the mean squared 

deviation between the model's predicted values and actual conditions. The smaller the deviation, the 

higher the model's fitting accuracy. 

  mse_ucb = mean_squared_error(test_data['price'], test_predictions_ucb) 

  mse_ts = mean_squared_error(test_data['price'], test_predictions_ts) 

  mse_ucb, mse_ts 

In the process of evaluating performance, we compared the performances of the asUCB and TS 

algorithms on the Mean Squared Error (MSE) metric, aiming to explore their relative superiority in 

fitting historical data and predicting future prices. 

2.6.  Tools and Implementation 

This experiment is conducted using Python, utilizing libraries such as Pandas, NumPy, Matplotlib, and 

Scikit-learn for data processing tasks, algorithm implementation, and graphical presentation of results. 

The experimental environment is configured with an Intel i9 processor and 16GB RAM, ensuring 

efficient computation and high precision of results. 

3.  Result analysis 

3.1.  Training Set Performance 

Within the training dataset, both the asUCB algorithm and Thompson Sampling (TS) identified optimal 

pricing strategies. We determined the best-performing strategy options by accumulating the rewards 

obtained from each algorithm, identifying the most effective pricing strategies. 

In the processing of the training dataset, the asUCB algorithm dynamically adjusted its confidence 

interval thresholds to balance the exploration of new knowledge and the exploitation of existing 

information. The research results show that this algorithm can effectively adapt to and simulate historical 

price trends within the training set, thereby proposing a robust pricing strategy. Notably, the UCB 

algorithm demonstrated rapid convergence and recorded lower cumulative regret metrics in various 
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experimental scenarios (see Figure 1, Figure 2, Figure 3,Figure 4), highlighting its superiority in solving 

online decision-making problems. 

The TS algorithm optimizes pricing strategies by generating probability distributions through 

sampling. Although initial price predictions may experience slight fluctuations, over time, the TS 

algorithm gradually converges to the optimal pricing strategy. Its performance in the training set also 

shows that it can effectively fit historical data, although its convergence is relatively slow, resulting in 

higher cumulative regret values (see Figure 1, Figure 2, Figure 3,Figure 5). 

3.2.  Simulation Set Performance 

On the simulation dataset, we applied the best pricing strategies identified during the training phase to 

untrained data and observed the actual performance of the UCB and TS algorithms. Simultaneously, we 

adopted Mean Squared Error (MSE) as the metric to assess the accuracy of the model fitting. 

3.2.1.  Performance of the asUCB Algorithm 

On the simulation set, the asUCB algorithm demonstrated good adaptability. The optimal pricing 

strategy determined by the asUCB algorithm resulted in an MSE of 276.29 in the simulation set, 

indicating the algorithm's effective capability to fit future price trends (see Figure 3). 

Additionally, the UCB algorithm exhibited significant stability in responding to market fluctuations, 

ensuring consistency in pricing outcomes across various volatile scenarios. 

3.2.2.  Performance of the TS Algorithm 

The TS algorithm had an MSE of 412.34 on the simulation set, slightly higher than that of the UCB 

algorithm, indicating its slightly inferior performance in fitting the test set data (see Figure 3). 

Although the TS algorithm's performance in handling novel data was somewhat lacking compared 

to the UCB algorithm, its mechanisms for gradual optimization and self-adaptation endow it with unique 

application value in a rapidly changing market environment. 

3.3.  Comparison and Analysis 

Based on the comparison of the performance of UCB and TS algorithms in the training dataset and 

simulation scenarios, the following core points can be summarized: 

Based on the Mean Squared Error (MSE) metric, the UCB algorithm exhibited lower error values 

(276.29), suggesting it fits and performs better compared to the test data. In contrast, the MSE for the 

TS algorithm was 412.34, which, although slightly higher, still possesses the capability to effectively 

adapt and describe the data. 

In terms of cumulative regret, the UCB algorithm demonstrated greater superiority compared to the 

TS algorithm. This finding implies that the UCB algorithm can more efficiently discover the optimal 

pricing strategy, thereby effectively reducing loss amounts in the decision-making process (see Figures 

1, Figure 2 and Figure 3). 

In terms of stability and flexibility: The UCB algorithm, due to its rapid convergence performance 

and lower regret values, shows exceptional stability and good fitting characteristics; whereas the TS 

algorithm displays unique advantages in adapting to the variability of market environments and its 

adaptive strategies. 

3.4.  Summary of Results 

Upon comprehensive consideration, both UCB and TS algorithms demonstrate potential application 

value in the dynamic pricing domain for crops. Among them, the UCB algorithm, with its smaller MSE 

and better cumulative regret values, exhibits superior performance in model fitting accuracy and stability; 

while the TS algorithm, through its flexible sampling strategy, shows a degree of adaptability in 

responding to dynamic market changes. 

The study results show that MAB algorithms can be effectively applied in the process of setting crop 

market pricing strategies and play a crucial role in grasping market dynamics and predicting future price 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/82/2024GLG0080 

6 



 

 

trends. Future research could continue to explore the application potential of these algorithms in various 

market environments and consider integrating other machine learning techniques to enhance their 

performance. 

 

Figure 1. cumulative regret comparison: UCB vs. TS (1 time) 

 

Figure 2. cumulative regret comparison: UCB vs. TS (10 time) 
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Figure 3. cumulative regret comparison: UCB vs. TS (100 time) 

 

Figure 4. cumulative regret of UCB over time 
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Figure 5. cumulative regret of TS over time 

4.  Conclusion and discussion 

4.1.  Summary of Experimental Results 

In this study, we explored the application performance of multi-armed bandit (MAB) algorithms in 

dynamic pricing of crops, specifically focusing on the upper confidence bound adaptive algorithm 

(asUCB) and Thompson Sampling (TS). Our findings include: 

Superiority of the UCB Algorithm: Compared to the TS algorithm, the UCB algorithm performed 

better in both the training dataset and simulation tests, specifically exhibiting lower Mean Squared Error 

(MSE) and fewer cumulative regrets. The algorithm demonstrated its rapid convergence and consistent 

stability, validating its applicability under volatile market conditions. 

Adaptability of the TS Algorithm: Although the TS algorithm showed slightly inferior MSE and 

cumulative regret values compared to the UCB algorithm, its mechanism of guiding strategy selection 

through probability distribution sampling grants it unique flexibility and adaptability in dealing with 

market volatility and uncertainty. This feature allows the TS algorithm to continuously optimize and 

adjust its strategy over long time periods, even if its initial performance may not be as prominent as that 

of the UCB algorithm. 

4.2.  Comparison with Existing Research 

The results of this study align with current academic perspectives and also offer new insights. Previous 

research has demonstrated the UCB algorithm's simplicity and efficiency, widely applying it in various 

contexts. Our experiments have further proven its exceptional performance in dynamic pricing. 

Moreover, the flexibility displayed by the TS algorithm in dealing with highly volatile market data 

reaffirms existing research findings. 

4.3.  Practical Application Significance 

The outcomes of this research provide significant references for formulating price strategies in the actual 

crop market. The UCB algorithm, with its rapid convergence and robust performance, is suitable for 
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scenarios that require quick responses to market dynamics, such as pricing strategies for seasonal 

agricultural products. In contrast, the TS algorithm shows its advantages in environments with high 

uncertainty and longer periods of adjustment, especially in the development of new markets or pricing 

strategies for highly volatile products. 

4.4.  Limitations of the Study 

Although this study has achieved certain successes, it has several limitations. Primarily, the reliance on 

historical and simulated data may not fully capture the complex and variable characteristics of market 

environments, potentially weakening the general applicability of the conclusions. Secondly, the study 

was limited to two types of multi-armed bandit algorithms and did not explore potential advantages of 

more advanced strategies like hybrid strategies or deep reinforcement learning in specific scenarios. 

Additionally, the experimental design did not fully incorporate other key pricing factors such as 

consumer behavior and market competition, which could significantly impact the effectiveness of 

pricing strategies in real-world applications. 

4.5.  Directions for Future Research 

Future research could delve deeper into several areas: 

4.5.1.  Exploring Algorithm Application Extensions 

Future directions could include integrating other areas of machine learning, such as merging deep 

reinforcement learning with game theory, to address more complex and variable market situations and 

pricing challenges. 

4.5.2.  Comprehensive Multi-factor Analysis 

Future studies could further explore factors such as consumer behavior characteristics and competitive 

market conditions, aiming to establish a more thorough and dynamically adjustable pricing mechanism 

model. 

4.5.3.  Multi-domain Adaptability of MAB Algorithms 

Not only are these algorithms effective in regulating prices in the crop market, but they could also be 

extended to e-commerce and transportation industries to optimize dynamic pricing strategies. Future 

scholars could explore these cross-industry applications to fully validate the general utility and practical 

significance of MAB algorithms. 

5.  Conclusion 

This study highlights the significant application prospects of UCB and TS algorithms in dynamic pricing 

for agricultural products, showcasing their robust performance, quick adaptation to market changes, 

stability in price setting, and suitability for dynamic agricultural markets. Conversely, the TS algorithm 

excels in uncertain environments by effectively adapting over time to optimize pricing strategies. The 

practical implications of this research are substantial as it provides insights into utilizing multi-armed 

bandit algorithms to enhance market responsiveness and pricing efficiency in agriculture. Notably, this 

study innovatively adapts these algorithms to simulate real-world scenarios, offering a novel approach 

that merges theoretical models with practical applications. However, it is important to acknowledge that 

reliance on historical and simulated data may not fully capture the complexity of real markets. 

Additionally, this study focuses only on two algorithm types while overlooking potential benefits from 

more advanced or hybrid strategies. Future research should aim at integrating advanced machine 

learning techniques to improve adaptability and accuracy of these algorithms. Furthermore, expanding 

their application across other industries such as e-commerce and transportation while incorporating 

factors like consumer behavior and competitive dynamics could provide deeper insights and more 

comprehensive pricing models. Enhancing the real-time responsiveness of these algorithms to market 

conditions would further validate their effectiveness in practical applications. Continued development 
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holds immense potential for multi-armed bandit algorithms revolutionizing dynamic pricing strategies 

across various sectors. 

References 

[1] Bi Wenjie, Chen Gong. High-speed Rail passenger ticket dynamic Pricing Algorithm based on 

deep reinforcement Learning [J]. Computer applications and software,2024,41(04):228-

235+261. 

[2] Zhang Yifan. Dynamic Pricing Algorithm for Niche Products based on MAB model [D]. Nanjing 

University,2021. 

[3] Bi Wenjie, Zhou Yubing. Research on joint inventory control and dynamic pricing of fresh 

products based on deep reinforcement learning [J]. Computer application research, 2022, 

39(09):2660-2664. 

[4] Fang Chao, Hu Yajing, Zheng Weibo, et al. Dynamic selection strategy for new product 

development project portfolio based on income information uncertainty of online learning [J]. 

Chinese management science,2024,32(06):151-162. 

[5] Bi Wenjie, Chen Meifang. Gaussian Process Regression Dynamic Pricing Algorithm considering 

strategic consumers [J]. Computer Applications and Software,2024,41(02):250-256. 

[6] Tang Jue, LIU Meilian, CHENG Chengqi. A first-order Markov dynamic pricing model 

considering consumer loyalty [J]. Social Scientist,2023,(10):77-84 

[7] Zhang Chen, Tian Qiong. Research on online airline ticket pricing strategy considering passenger 

loyalty [J]. Journal of management science,2019,22(12):31-39+55. 

[8] Ma Shuangfeng, Guo Wei. Dynamic pricing of series queuing system with limited resources and 

its application in vehicle detection field [J]. Systems engineering theory and practice, 2023, 

43(12):3653-3674. 

[9] Xu Minghui, Shen Hui, Zheng Yiwei. Research on Dynamic Pricing based on consumer time 

Preference and Product quality information update [J]. System Engineering Theory and 

Practice, 2023, 43(10):2989-3017. 

[10] Feng Zibai. Dynamic Pricing Problem with Reference Price [D]. University of Science and 

Technology of China, 2023. 

[11] Cui Zibin. Research on Dynamic Pricing of Competitive products in the Context of Consumer 

learning [D]. Guangdong University of Technology, 2022 

[12] Liu Xu. Based on the demand for learning the perishable product dynamic pricing algorithm 

research [D]. Southwest university of finance and economics, 2022. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/82/2024GLG0080 

11 


