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Abstract. The integration of electric vehicles (EVs) into smart grids represents a pivotal shift 
towards sustainable transportation, offering substantial environmental benefits and new 
challenges for grid stability and energy management. This paper proposes a dual-layer 
economic dispatch model emphasizing source-load collaboration for carbon reduction, utilizing 
carbon trading mechanisms and demand response strategies to enhance grid stability and 
carbon efficiency. The Vehicle-to-Grid (V2G) technology emerges as a key solution, enabling 
EVs to contribute to grid reliability and facilitating renewable energy integration. Through 
analysis of EV charging behavior and demand response mechanisms, the study underscores the 
critical role of EVs in achieving carbon neutrality goals and the necessity of innovative 
solutions to integrate EVs seamlessly into the grid. This research highlights the importance of 
collaborative efforts among policymakers, utilities, and stakeholders to address the challenges 
and seize the opportunities presented by EV integration, paving the way for a low-carbon 
energy future. 
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1.  Introduction 
Amid the urgent global push for decarbonization and a sustainable energy transition, the integration of 
electric vehicles (EVs) with smart grids emerges as a pivotal innovation, promising to redefine the 
landscapes of transportation and energy. This confluence of technologies is driven by the need to 
mitigate environmental impacts, particularly greenhouse gas emissions, while harnessing the potential 
of renewable energy sources like wind and photovoltaics (PVs). The role of EVs extends beyond mere 
transportation, as they become active elements within energy networks, capable of functioning as 
mobile energy storage units. This capability allows EVs to contribute significantly to the stability, 
efficiency, and resilience of smart grids. The dynamic interaction between EVs and smart grids 
encapsulates both challenges and opportunities. On the challenge front, the integration process 
introduces complexities such as power system stability concerns, potential voltage and current 
distortions, and the need to adapt load profiles and manage power losses. Conversely, the integration 
stands to offer substantial contributions towards energy management, improving grid quality, 
facilitating grid balancing, and rendering socio-economic benefits. These include more effective 
utilization of renewable energy, enhancements in grid reliability, and the promotion of a more 
environmentally sustainable transportation system. This paper identifies crucial research themes, 
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ranging from the assessment of grid reliability in light of EV integration to the exploration of 
technological and policy solutions designed to optimize this integration, and predominately leverages 
analytical and simulation-based methods, with Monte Carlo simulations being particularly prevalent 
for predicting the impact of variable factors on grid performance. This study aims to elucidate the 
multifaceted relationship between EVs and smart grids, highlighting the technological innovations and 
policy frameworks necessary to harness the full potential of this integration, by offering insights into 
both the benefits and the challenges of EV-smart grid synergy, contributing to shaping future 
directions in sustainable energy and urban mobility strategies. It underscores the imperative for 
ongoing innovation in charging infrastructure, battery technology, and business models to encourage 
the widespread adoption of EVs, thereby advancing the transition towards a low-carbon, sustainable 
energy future [1-3]. 

2.  Study and Benefit Analysis of Low-Carbon Demand Response Mechanism Based on EVs 

2.1.  Impact of Electric Vehicles on Grid Stability and Demand 
The escalating adoption of electric vehicles (EVs) heralds a new era of eco-friendly transportation, 
significantly altering energy consumption patterns. This shift, however, introduces complexity to the 
grid's operational dynamics. The charging behavior of EVs, marked by their unpredictability and 
concentrated demand peaks, catalyzes unregulated charging phenomena, exerting stress on the grid. 
Such strain manifests through voltage and frequency fluctuations alongside harmonic disturbances, 
challenging the grid's ability to maintain stability and reliability. 

2.2.  Exploration of Charging Technologies and Strategies for Power Balance 
Acknowledging the multifaceted impact of EVs, the focus shifts toward devising strategies that 
mitigate their grid challenges while amplifying their environmental and energy efficiency benefits. At 
the forefront of these strategies stands Vehicle-to-Grid (V2G) technology, a paradigm that reimagines 
EVs as dual-purpose assets: energy consumers and providers. V2G facilitates a dynamic energy 
exchange, allowing EVs to supply stored energy back to the grid during peak demand and recharge 
during off-peak hours. This symbiotic relationship not only enhances grid flexibility but also promotes 
the integration of renewable energy sources, marking a stride toward decarbonization. Additionally, 
V2G showcases potential in optimizing energy distribution, contributing to blackout prevention, and 
minimizing renewable energy wastage, thereby establishing a foundation for sustainable energy 
systems. 

 
Figure 1. V2R Technology 
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2.3.  Low-Carbon Demand Response and Dynamic Pricing for Electric Vehicles 
Transitioning to low-carbon demand response strategies, the narrative extends to dynamic pricing 
models aimed at incentivizing EV users to align their charging habits with grid demands. This 
approach encompasses real-time pricing, time-of-use tariffs, and peak/off-peak pricing schemes, 
designed to modulate the electricity consumption patterns of EVs in favor of grid efficiency. Despite 
the evident benefits of grid management and renewable energy promotion, the adoption of these 
models encounters obstacles such as data privacy concerns, technical challenges, and user acceptance 
hurdles, underscoring the necessity for comprehensive policy frameworks and technological 
advancements. 

As EV proliferation continues, with projections indicating significant growth by 2030, the 
interconnection between EVs and the grid will deepen. This evolution calls for concerted efforts in 
research, policy development, and technology innovation to ensure a harmonious integration of EVs 
into the energy landscape, thereby bolstering grid stability and facilitating a transition towards a more 
sustainable and low-carbon future. 

3.  Carbon reduction potential analysis of EVs 

3.1.  Normal Distribution Model for Temporal Shift of Electric Vehicles 
Given the inherent randomness in the charging schedules of multiple electric vehicles within a region, 
modeling the charging behavior of individual electric vehicles becomes challenging and impractical. 
Hence, a statistical-based simulation method, known as the Monte Carlo method [4], is adopted to 
estimate the aggregate charging load of multiple electric vehicles by selecting a large number of 
samples. Assuming no parking spaces are available at the charging stations, the charging mode for 
electric vehicles defaults to leaving the station immediately after reaching the expected capacity. In 
this mode, the travel demands and usage habits of electric vehicle users primarily manifest in arrival 
times and daily mileage. These factors determine the total charging volume and duration for electric 
vehicle users. According to statistics from the National Highway Traffic Safety Administration in the 
United States, a continuous random variable is used to represent the starting time of the nth electric 
vehicle arriving at the charging station, and its probability density function follows a normal 
distribution [5], as shown below: 
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Here, μ represents the mean arrival time of electric vehicles at the charging station, and σ 
represents the standard deviation. Such a model better simulates the charging behavior of electric 
vehicles, laying the groundwork for further research into electric vehicle charging patterns. 

The Normal Distribution Model for predicting the charging times of electric vehicles (EVs) has 
been instrumental in several research studies, showcasing its broad applicability and value in 
understanding and managing EV-related demands on power grids. For instance, a study by Zhang et 
al.[6]explored the utilization of normal distribution models to forecast EV charging demands, 
demonstrating the model's capacity to accurately predict peak charging times. This foresight allows for 
better grid management and scheduling of renewable energy resources, ensuring that the power supply 
meets the demand efficiently. Another application by Smith and Johnson [7] focused on the integration 
of EVs into urban power networks. They used the normal distribution model to simulate various EV 
charging scenarios, evaluating the impact on local grid stability. Their findings highlighted the 
importance of dynamic grid management strategies to accommodate the anticipated rise in EV usage, 
thus underscoring the practical implications of the model in urban planning and infrastructure 
development. Moreover, a comprehensive analysis by Patel and Kumar [8] leveraged this model to 
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assess the potential of Vehicle-to-Grid (V2G) technologies. By simulating the charging and 
discharging patterns of EVs, their research illustrated how V2G can be optimized to balance grid loads 
during peak and off-peak hours, enhancing grid resilience and facilitating the integration of 
intermittent renewable energy sources. 

The significance and value of the Normal Distribution Model in these contexts are manifold. It not 
only aids in the precise forecasting of EV charging demands but also supports the strategic planning 
for grid augmentation and renewable energy scheduling. Furthermore, by enabling a deeper 
understanding of EV charging behaviors, it paves the way for developing effective policies and 
technologies to promote sustainable energy consumption and reduce carbon emissions. 

3.2.  Dynamic Carbon Emission Factor 
With the proliferation of electric vehicles and the evolution of the power system, traditional static 
carbon emission factors are no longer adequate. Therefore, it is imperative to consider dynamic carbon 
emission factors to more accurately assess the impact of electric vehicles on carbon emissions. 
Dynamic carbon emission factors can be adjusted based on factors such as the energy composition, 
generation efficiency, and operation mode of the power system. For instance, when the proportion of 
renewable energy sources in the power system increases, the carbon emission factor decreases; 
conversely, when the proportion of coal-fired power generation in the system increases, the carbon 
emission factor increases. 

To construct a dynamic carbon emission factor model, historical data and forecasting models can 
be utilized to predict the future energy composition and carbon emission levels of the power system. 
Subsequently, the carbon emission factors can be adjusted based on this data to reflect the actual 
situation of the power system. The introduction of dynamic carbon emission factors will enhance the 
accuracy of carbon emission models, enabling a better assessment of the impact of electric vehicles on 
carbon emissions. This will facilitate the formulation of more effective policies and measures to 
promote the positive role of electric vehicles in carbon neutrality objectives. 

3.3.  Carbon emission model 
The total carbon emissions of electric vehicles over their lifecycle are the sum of emissions from four 
stages: raw material acquisition, vehicle manufacturing, usage, and recycling. The formula is as 
follows: 

 C-	 	= 	 C/0 +	C1/	 + C23!	 + C4!5	 (2) 

Where Ct	 represents the total lifecycle carbon emissions in kilograms of CO2, and CMA,CVM 	, 
CUSE	 and CREC	 represent the carbon emissions in kilograms of CO2 for the material acquisition, 
vehicle manufacturing, usage, and recycling stages, respectively [9]. This section discusses the carbon 
emission model for the third stage of usage cycles. The carbon emissions during the usage phase of a 
vehicle arise from the consumption of electrical energy and the physical materials invested in 
maintenance. The calculation formula is: 

 C23! = C!67 + C/6, (3) 

Where CENG represents the carbon emissions from the energy consumption over the vehicle's 
lifecycle, and CMNT  represents the carbon emissions from maintenance during usage, primarily 
including the replacement of tires and automotive fluids. Electric vehicles primarily use electrical 
energy as their main energy source, resulting in zero emissions during usage. The carbon emissions 
stem from the production of electricity, taking into account the charging efficiency of the power 
battery. The carbon emission calculation model is: 

 C89 = (FC × :
$;;
)/µ × k (4) 
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Where FC represents the energy consumption per hundred kilometers, measured in kWh/100 km; L 
represents the total driving distance over the vehicle's lifecycle, measured in kilometers;μ represents 
the charging efficiency of the power battery; and k represents the carbon emission factor for electricity 
production, measured in kilograms of CO2 per kilogram. 

4.   Case Analysis 

4.1.  Model Establishment 
The IEEE 33-node distribution network system model was built using power system planning software 
(such as PowerFactory), including the topology of the distribution network, loads at each node, 
generation capacities of each generator, and operational parameters of the network (voltage, power 
factor, etc.). The carbon emission model adopted the following formula from the power system: 

 C3<= 	= 	∑E> 	× F> (5) 

Where CSys  represents the total carbon emissions of the system (kg CO2), Ei	 denotes the 
generation capacity of the i-th type of power source (MWh), and Fi represents the carbon emission 
coefficient of the i-th type of power source (kg CO2/MWh). 

4.2.  Optimization Process 
This study aimed to reduce the total carbon emissions of the distribution network system while 
considering system safety and economic efficiency. In the case analysis, various load levels (100%, 
80%, 60%), renewable energy generation ratios (0%, 20%, 40%), and network operation modes 
(reactive power optimization, power flow optimization) were considered. Simulation results showed 
that a higher proportion of renewable energy generation leads to lower system carbon emissions. 
Optimizing the distribution network operation mode effectively reduces carbon emissions, while 
higher load levels result in increased carbon emissions. Sensitivity analysis also investigated the 
impact of different carbon emission coefficients and power prices on system carbon emissions. Figure 
2 depicts the topology of the IEEE 33-node distribution network system, including areas such as work 
zones and residential zones, as well as the connecting lines between each node. Analysis of Figure 1 
reveals that the work zones and residential areas are the primary regions for electric vehicle charging, 
leading to a significant increase in local grid loads when charging is concentrated. The impedance of 
the lines affects voltage stability, necessitating the implementation of appropriate distribution network 
planning and operational strategies to maintain voltage stability. Harmonics accumulate at various 
nodes, necessitating harmonic mitigation measures to reduce their impact. Line flows vary with the 
charging load of electric vehicles, necessitating the optimization of network operation methods 
through flow calculation and analysis. 

 
Figure 2. IEEE 33-node distribution network system 
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The study employing the IEEE 33-node distribution network system model underlines the critical 
interconnections between energy sources, operational strategies, and carbon emissions in power 
systems. Incorporating renewable energy and optimizing network operations, such as reactive power 
and power flow adjustments, are identified as key strategies for reducing carbon emissions and 
enhancing system efficiency and safety. However, challenges like increased load levels underscore the 
delicate balance required to meet energy demands sustainably. Research outcomes based on this model 
reveal that increasing renewable energy's share significantly lowers carbon emissions, advocating for 
policy shifts towards greener energy solutions. Sensitivity analyses examining the effects of varying 
carbon emission coefficients and power pricing further elucidate the economic factors influencing 
carbon outputs, emphasizing the need for adaptive management and policy frameworks. These 
findings advocate for strategic enhancements in renewable energy integration, network management, 
and efficiency improvements as essential steps toward sustainable energy management. This 
comprehensive approach not only offers theoretical insights for policy development but also practical 
guidance for operational strategies in distribution networks, aiming to achieve a balance between 
energy demands and carbon neutrality goals. The case analysis demonstrates the value of simulation 
models in planning for environmental and operational sustainability, marking a pathway for leveraging 
technological advancements toward achieving sustainable energy objectives. 

4.3.  Python code 
# Python code for IEEE 33 node test feeder carbon emission optimization 
 
import pandas as pd 
import numpy as np 
from pypower import * 
 
# IEEE 33 node test feeder data 
case = 'ieee33' 
 
# Power system parameters 
base_MVA = 100 
bus_data = pd.read_csv('bus_data.csv') 
line_data = pd.read_csv('line_data.csv') 
gen_data = pd.read_csv('gen_data.csv') 
 
# Carbon emission coefficients 
co2_coeff = { 'coal': 0.82, 'gas' : 0.52, 'hydro' : 0.00 } 
 
# Load levels 
load_levels = [1.0, 0.8, 0.6] 
 
# Renewable energy penetration levels 
renewable_ratios = [0.0, 0.2, 0.4] 
 
# Reactive power optimization 
def reactive_power_optimization(case, load_level, renewable_ratio) : 
    # Modify load 
    bus_data['load'] *= load_level 
 
    # Modify renewable energy generation 
    gen_data['gen'] *= (1 - renewable_ratio) 
    gen_data.loc[gen_data['type'] == 'hydro', 'gen'] *= renewable_ratio 
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    # Reactive power optimization 
    ppc = powerflow(case, ppopt = ppoptions(opf_version = 'OPF_2')) 
 
    # Calculate total carbon emission 
    total_emission = 0 
    for i in range(len(gen_data)) : 
        total_emission += gen_data.loc[i, 'gen'] * co2_coeff[gen_data.loc[i, 'type']] 
 
        return total_emission 
 
        # Power flow optimization 
        def power_flow_optimization(case, load_level, renewable_ratio) : 
        # Modify load 
        bus_data['load'] *= load_level 
 
        # Modify renewable energy generation 
        gen_data['gen'] *= (1 - renewable_ratio) 
        gen_data.loc[gen_data['type'] == 'hydro', 'gen'] *= renewable_ratio 
 
        # Power flow optimization 
        ppc = powerflow(case, ppopt = ppoptions(opf_version = 'OPF_1')) 
 
        # Calculate total carbon emission 
        total_emission = 0 
        for i in range(len(gen_data)) : 
            total_emission += gen_data.loc[i, 'gen'] * co2_coeff[gen_data.loc[i, 'type']] 
 
            return total_emission 
 
            # Simulation results 
            results = {} 
            for load_level in load_levels : 
for renewable_ratio in renewable_ratios : 
results[(load_level, renewable_ratio)] = {} 
results[(load_level, renewable_ratio)]['reactive_power'] = reactive_power_optimization(case, 
load_level, renewable_ratio) 
results[(load_level, renewable_ratio)]['power_flow'] = power_flow_optimization(case, load_level, 
renewable_ratio) 
 
# Print results 
print(results) 

5.  Conclusion 
The integration of electric vehicles (EVs) into smart grids marks a critical step towards achieving 
carbon neutrality and fostering sustainable transportation. While this research elucidates the significant 
benefits such as enhanced grid stability, efficient energy management, and reduced carbon emissions, 
it also reveals certain limitations that need to be addressed to optimize integration and fully realize the 
potential of EV-smart grid synergy. Firstly, the current research underscores the technological and 
regulatory challenges in scaling Vehicle-to-Grid (V2G) technologies and dynamic pricing mechanisms. 
Issues such as the need for substantial infrastructure investments concerns over battery degradation, 
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and the inertia in consumer behavior towards dynamic charging habits pose notable barriers. Moreover, 
the adequacy of existing grid infrastructure to handle large-scale integration of EVs without 
compromising grid reliability remains a concern. To surmount these challenges, a multifaceted 
approach is necessary. Technologically, advancing battery technologies to improve durability and 
reduce costs is crucial. Enhancing the sophistication of smart charging infrastructures to enable more 
nuanced and responsive interaction between EVs and the grid will also be vital. Regulatory and policy 
frameworks should evolve to incentivize both consumers and utilities to adopt V2G capabilities and 
dynamic pricing models. This could include subsidies for infrastructure upgrades, tax incentives for 
EV purchases, and policies supporting renewable energy sources for electricity generation. Future 
research should delve deeper into the optimization of energy management systems that can 
dynamically adjust to real-time data from both the grid and EVs. Investigating advanced predictive 
models to forecast EV charging demand with greater accuracy will facilitate more effective grid 
management. Additionally, exploring the social and economic impacts of widespread EV integration, 
including consumer behavior, market structures, and energy equity issues, will provide valuable 
insights for policymakers and stakeholders. As battery technology advances and renewable energy 
sources become more prevalent, the integration of EVs into smart grids is expected to accelerate. This 
will necessitate innovative solutions to manage the increased complexity of energy systems. We 
predict that AI and machine learning algorithms will play a significant role in optimizing these 
systems, enhancing the efficiency and reliability of the grid, and facilitating the transition to a 
low-carbon economy. 

In conclusion, while the path to fully integrating EVs into smart grids is fraught with challenges, 
the potential benefits justify the concerted efforts needed from all stakeholders. By addressing the 
current limitations and focusing on the suggested improvements and areas for future research, we can 
ensure that EVs contribute significantly to achieving a sustainable and carbon-neutral future. 
Collaboration across industries, academia, and government will be essential in realizing the 
transformative potential of this integration, paving the way for innovative solutions that enhance both 
transportation and energy systems globally. 
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