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Abstract. Remote sensing image scene recognition plays a pivotal role in various applications, 

including environmental monitoring, disaster response, urban planning, precision agriculture, 

and aids in resource management and policy formulation. However, utilizing established 

convolutional neural networks(CNNs) models like AlexNet and VGG9 for this task can be 

computationally intensive and time-consuming due to their extensive parameter requirements. 

This dissertation introduces a MobileNet-based CNN optimized for remote sensing image 

scene recognition. This lightweight model significantly reduces computational load and model 

size without compromising accuracy, thereby enhancing efficiency. Empirical results on the 

NWPU45 dataset demonstrate MobileNet's superiority, achieving an accuracy of 91.16%, a 

Kappa coefficient of 90.96%, and an F1 score of 91.16% on the test set. Moreover, 

MobileNet's compact architecture, with merely 3.2531 million parameters and 587.9342 

million FLOPs, underscores its efficiency and makes it a promising candidate for practical 

deployment in remote sensing applications. The findings suggest that MobileNet not only 

addresses the challenge of computational intensity but also opens new avenues for advancing 

scene recognition technology in the field of remote sensing. 
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1.  Introduction 

Remote sensing image scene recognition holds significant practical importance and broad application 

prospects across various sectors[1]. As a critical earth observation tool, it offers substantial social and 

economic benefits by promptly detecting environmental changes, enhancing the efficiency of disaster 

response, and playing a pivotal role in urban planning, land management, and providing vital insights 

for military strategy. 

Traditional neural network models, such as the radial basis function (RBF) network[2] and the 

feed-forward neural network[3], face challenges in remote sensing image scene recognition. They 

require manual feature engineering, struggle to capture the complex and high-order relationships 

within remote sensing imagery, and involve considerable computational overhead. 

High-resolution remote sensing imagery, while rich in spatial and textural information, presents a 

daunting task for scene recognition due to its high complexity, varied imaging conditions, and 

limitations in spectral resolution. This complexity makes the direct extraction of scene information 
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from vast datasets particularly challenging, thus highlighting the difficulty and importance of the task, 

which has garnered considerable attention in the field. 

Current research often focuses on enhancing the accuracy of remote sensing image scene 

recognition, yet it frequently overlooks the computational demands. This oversight can impede 

real-time processing and the rapid delivery of recognition outcomes, which are essential for practical 

applications. 

Advances in neural network applications for remote sensing image scene recognition have 

demonstrated the effectiveness of Recurrent Neural Networks (RNNs)[4], Deep Belief Networks[5], 

and convolutional neural networks(CNNs)[6]. CNNs, in particular, stand out due to their robust 

feature extraction capabilities, adaptability, generalization, and adept handling of large datasets, which 

are advantageous for remote sensing image recognition tasks. However, two primary issues remain: 

the extensive parameter computation and the time-consuming nature of complex CNN structures, 

which hinder real-time recognition capabilities. 

This paper introduces MobileNet[7], a lightweight CNN that employs Depthwise Separable 

Convolution(DSC) to alleviate the computational and parameter burden associated with traditional 

CNNs. Despite its efficiency, MobileNet maintains competitive accuracy levels compared to other 

mainstream models. 

Our contributions are as follows: 

1. We have applied CNNs to the task of remote sensing image scene recognition, significantly 

enhancing the accuracy and efficiency of the recognition process. 

2. We have adopted the MobileNetV1 architecture, a lightweight CNN model that effectively 

extracts features from remote sensing images using DSC, significantly reducing the model's 

computational demands. 

3. To substantiate the effectiveness of our approach, we conducted comparative experiments 

between MobileNetV1 and other prevalent CNN models on the NWPU45[8] dataset. The results 

indicate that MobileNetV1 outperforms other models on this dataset, upholding classification 

accuracy. 

The remainder of this paper is structured as follows: Section 2 details the MobileNet model, 

Section 3 presents the experimental findings, Section 4 provides a summary of our conclusions,and 

section 5 presents the cited references. 

2.  Method 

2.1.  Convolutional neural network 

CNNs are a class of deep learning models that have found extensive application in the domains of 

image recognition and analysis. They draw inspiration from the human visual system, utilizing a series 

of trainable convolutional kernels to perform convolutional operations that adeptly extract features 

from images. Following the convolutional layers, pooling layers are strategically employed to reduce 

the dimensionality of the features and to enhance their invariance to variations, which in turn helps to 

minimize computational complexity and mitigate the risk of overfitting. Subsequently, a fully 

connected layer consolidates these processed features to carry out sophisticated classification or 

regression tasks, culminating in the model's final output. 

In the context of remote sensing image scene recognition, the task is fraught with challenges that 

include managing the vast volume of data, discerning complex surface features, accounting for 

variable imaging conditions, dealing with a scarcity of labeled data, and tackling the issue of category 

imbalance. CNNs rise to these challenges by offering an automatic feature extraction mechanism that 

requires no manual intervention. Their inherent strong translation invariance ensures robustness 

against shifts in the visual data. The end-to-end learning process of CNNs streamlines the workflow by 

seamlessly integrating feature extraction and decision-making stages. Furthermore, their excellent 

generalization capability enables them to perform reliably across diverse and unseen scenarios, making 

CNNs a powerful tool for remote sensing image scene recognition. 
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2.2.  Framework 

 

Figure 1. Framework of Scene recognition method. 

In the realm of remote sensing image scene recognition, this study leverages the lightweight CNN, 

MobileNet, and applies it to the NWPU45 dataset—a collection comprising 45 distinct scene 

categories. This dataset presents several challenges, including high category diversity, sample 

imbalance, and inconsistent image resolutions across its contents. MobileNet's architecture is adept at 

efficiently extracting pivotal features from remote sensing images, thereby facilitating successful 

scene classification with its low computational overhead. Utilizing this approach, we have 

systematically assigned each image in the dataset to one of the 45 corresponding scene category labels 

with high precision. This not only underscores MobileNet's effectiveness in handling complex remote 

sensing imagery but also demonstrates its utility in practical applications where efficiency and 

accuracy are paramount. 

2.3.  Depthwise separable convolution 

 

Figure 2. Depthwise separable convolution. DSC(Ci, Co, S). 

DSC is an efficient optimization strategy designed to mitigate the computational intensity and 

parameter volume associated with CNNs. This approach intelligently bifurcates the standard 

convolution process into two more manageable stages: depthwise convolution and pointwise 

convolution. 

Initially, each input channel engages in an independent depthwise convolution through a dedicated 

3×3 kernel, which operates without cross-channel interaction. The result is an output channel set 

identical in number to the input channels (Ci), with spatial dimensions condensed according to a 

specified step size (S). Subsequent to the depthwise convolution, batch normalization(BN) is applied 

to expedite the training process and bolster the model's robustness, succeeded by a ReLU activation 

function that enriches the model's capacity for capturing nonlinear relationships. 

Subsequently, pointwise convolution is executed, where a 1×1 convolution kernel is employed to 

amalgamate the outputs from the depthwise convolutions. This synthesis results in a unified set of 

output channels (C0), without any alteration to the spatial dimensions of the feature map. The 

pointwise convolution allows for channel count modulation, enabling the network to discern 

composite patterns across various channels. Following this step, BN is reapplied, complemented by 

another instance of the ReLU activation function. 

This ingenious design enables DSC to markedly curtail the parameter count and computational 

demands of the CNN, without substantially compromising on accuracy. Consequently, it renders the 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/101/20240932 

21 



model exceptionally well-suited for environments constrained by limited computational resources, 

offering a judicious balance between efficiency and performance. 

3.  Experiment 

3.1.  Dataset 

The NWPU45[8]dataset, an esteemed repository for remote sensing image scene classification, 

originates from Northwestern Polytechnical University and is crafted for pixel-level classification 

endeavors. It encompasses a diverse spectrum of 45 distinct surface scenes, spanning from airports and 

baseball stadiums to deserts and farmlands, encapsulating both urban and natural terrains. The dataset 

offers a wealth of imagery, with each category featuring 700 high-quality images to enrich the 

research corpus. 

The dataset is characterized by its extensive category diversity, uneven sample distribution across 

classes, and a variance in image resolutions. To ensure consistency, all images have been standardized 

to a uniform resolution of 256 × 256 pixels. The Ground Sampling Distances (GSDs) exhibit a broad 

spectrum, ranging from as fine as 0.2 meters to as coarse as 30 meters. In terms of dataset distribution, 

80% of the images are allocated for training purposes, with the remaining 20% reserved for testing. 

This partitioning is strategically designed to facilitate the development and assessment of deep 

learning models. A visual representation of the NWPU45 dataset can be found , which provides a 

schematic overview of its composition and structure. 

3.2.  Experimental setup 

In this research, we harnessed the power of NVIDIA RTX3090 GPUs and selected Python 3.10.0 as 

our development environment, complemented by version 2.3 of the PyTorch framework for the 

training of our deep learning models. During the preliminary phase of experimentation, we 

meticulously tuned a suite of hyperparameters to enhance model performance. 

Specifically, we designated a total of 60 epochs for the model's training cycle, ensuring ample 

exposure to the training data. Concurrently, we set the learning rate at 0.0002, a choice that allows us 

to meticulously control the magnitude of model weight updates, thereby striking a balance between 

convergence velocity and the fidelity of optimization. 

For each iteration of gradient descent, we opted for a Batch size of 16 samples, leveraging the 

GPU's parallel processing prowess while also optimizing memory utilization. Furthermore, we 

employed the cross-entropy loss function as our model's loss criterion. This selection is deliberate, as 

the cross-entropy function adeptly directs the model's optimization trajectory during training. It does 

so by juxtaposing the probability distributions predicted by the model against the actual labels of the 

dataset, with the ultimate goal of minimizing the potential for classification errors. This strategic 

choice of hyperparameters and functions has been instrumental in refining our model's predictive 

capabilities within the scope of this study. 

3.3.  Evaluation metrics 

In this study, we have employed a comprehensive set of evaluation metrics[9]to appraise the 

performance of our model across various dimensions. The metrics selected for the classification aspect 

include Accuracy, which is the ratio of correctly predicted instances to the overall sample count; the 

Kappa coefficient, a measure that quantifies classification accuracy while accounting for chance 

agreement; and the F-1 Score, which harmoniously combines the precision and recall of the model to 

provide a nuanced assessment of its performance. 

These metrics are derived from the testing phase, where we calculate the True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives (FN). The observed concordance rate, 

denoted as p
0
, and the expected concordance rate, denoted as p

e
, are also determined. TP represents 

the count of samples accurately identified as belonging to the positive class, while TN signifies the 

count of samples correctly identified as belonging to the negative class. FP refers to the instances 
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where the model incorrectly classifies samples as positive, and FN denotes the instances where the 

model incorrectly classifies samples as negative. 

The observed concordance rate,p
0
, is the proportion of samples that are correctly classified by the 

model relative to the total number of samples. Conversely, the expected concordance rate, p
e
, is the 

proportion of samples that would be expected to be correctly classified if the classification were to 

occur at random. These metrics collectively offer a robust framework for evaluating the efficacy and 

reliability of our model within the context of remote sensing image scene recognition. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1)    

 𝐾𝑎𝑝𝑝𝑎 =
𝑝0−𝑝𝑒

1−𝑝𝑒
 (2) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)  

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)    

 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5)                          

3.4.  Comparison results 

Table 1. Results of popular models. 

Models Accuracy 

(%) 

Kappa 

(%) 

F1 -score (%) Params (M) FLOPs (M) 

LeNet 59.70 58.78 59.53 7.1613 71.4566 

AlexNet 64.67 63.86 64.88 76.0549 1.4978 

VGG9 85.08 84.74 85.13 558.5261 14,274,406.4  

ResNet18 88.64 88.38 88.56 11.3195 1.8237 

MobileNet 91.16 90.96 91.16 3.2531 587.9342 

 

To substantiate the efficacy of MobileNet in the domain of remote sensing image scene recognition, 

we conducted a comparative analysis with several other prevalent CNNs. The synthesized 

experimental outcomes, as delineated in Table 1, indicate that MobileNet outperforms all other models 

under consideration. The sequence of performance starts with MobileNet, followed by ResNet18[10], 

VGG9[11], AlexNet[12], and LeNet[13]. 

ResNet18 also exhibits commendable performance, which can be attributed to its more profound 

network architecture. This deeper structure is instrumental in mitigating the degradation of features. 

Despite its capability to furnish a robust feature representation, ResNet18 is encumbered by a 

substantial count of parameters, leading to escalated demands on computational resources. 

In stark contrast, MobileNet presents a dual advantage of a significantly reduced parameter count 

and high experimental accuracy, thereby achieving a lightweight and efficient feature extraction 

process. The deeply separable convolutional design of MobileNet enables a substantial reduction in 

both the parameter count and computational requirements of the model. This design does not 

compromise the model's ability to adeptly capture the spatial features of images. MobileNet's 

proficiency in efficient feature extraction, despite its minimalistic parameter profile, is a testament to 

its effectiveness in remote sensing image scene recognition tasks. 

In sum, MobileNet manifests substantial superiority in the sphere of remote sensing image scene 

recognition, attributable to its trifecta of being lightweight, efficient, and accurate. These attributes 

make MobileNet a highly promising candidate for deployment in scenarios where computational 

resources are at a premium, without sacrificing the quality of recognition performance. 
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4.  Conclusions 

This paper introduces a lightweight CNN model, leveraging the MobileNet architecture, for the task of 

scene recognition in remote sensing imagery. When pitted against other extant CNN models in 

experiments utilizing the NWPU45 dataset, MobileNet not only exemplifies superior classification 

accuracy but also excels in Kappa coefficient and F1-score metrics, concurrently achieving a 

substantial reduction in both parameter count and computational demand. These findings validate that 

MobileNet is adept at diminishing the computational and storage burdens of the model, without 

compromising on the precision of recognition. Consequently, the integration of MobileNet into the 

domain of remote sensing image scene recognition adeptly addresses the challenge of the extensive 

parameter size inherent in traditional models, while concurrently enhancing computational efficiency, 

offering an innovative and effective solution for this application. 

Looking ahead, we are committed to broadening the application spectrum of the MobileNet model, 

particularly within the realm of cloud image recognition. Through structural refinements and 

meticulous parameter tuning, we aim to elevate the model's recognition capabilities. Given the high 

dimensionality and spatio-temporal intricacies of cloud imagery, we intend to delve into novel 

strategies for feature extraction and context fusion. Our objective is to bolster the precision of cloud 

classification, thereby equipping the model to serve as a robust tool for climate analysis and weather 

forecasting. We are confident that these endeavors will stimulate further advancements in the field of 

image recognition technology. 
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