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Abstract. In the field of reinforcement learning, training agents using machine learning 

algorithms to learn and perform tasks in complex environments has become a prevalent approach. 

However, reinforcement learning faces challenges such as training instability and decision 

opacity, which limit its feasibility in real-world applications. To solve the problems of stability 

and transparency in reinforcement learning, this project will use advanced algorithms like 

Proximal Policy Optimization (PPO), Q-DAGGER, and Gradient Boosting Decision Trees to set 

up reinforcement learning agents in the OpenAI Gymnasium environment. Specifically, the 

study selected the Atari game Breakout as the testbed, enhancing training efficiency and game 

performance by refining reward structures and decision-making processes, and integrating 

interpretable models to provide explanations for agent decisions. This study has successfully 

developed robust reinforcement learning agents that excel in complex environments. By 

employing advanced algorithms like PPO, Q-DAGGER, and Gradient Boosting Decision Trees, 

the study has addressed issues of training instability, and improved game performance through 

optimized reward structures and decision processes. Additionally, by integrating interpretable 

models, the study has provided insights into the learned strategies of the agents, thereby 

enhancing decision transparency. These findings provide crucial support for the broader 

application of reinforcement learning in real-world scenarios and offer valuable insights for 

tackling other complex tasks. 

Keywords: Reinforcement learning, Explainable artificial intelligence, Proximal policy gradient, 

GBDT. 

1.  Introduction 

In recent years, reinforcement learning (RL) has made significant strides, particularly in complex 

environments like video games, where it has demonstrated the potential to exceed human-level 

performance. However, despite these advancements, RL faces critical challenges in terms of 

explainability and stability, particularly when applied to dynamic and unpredictable settings such as the 

Atari game Breakout. This game, a staple in RL research, requires strategic interaction with a continually 

changing environment, making it an ideal platform for studying AI behavior and strategy optimization 

[1]. 

This project focuses on enhancing the transparency and effectiveness of reinforcement learning 

agents in complex environments. Traditional RL approaches often lack transparency, hindering their 

adoption in domains requiring understandable decision-making processes [1][2]. To address this, the 
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project employs a hybrid approach combining Proximal Policy Optimization (PPO), Q-DAGGER, and 

Gradient Boosting Decision Trees. PPO handles large action and state spaces robustly; Q-DAGGER 

integrates expert demonstrations to improve training efficiency; and Gradient Boosting Decision Trees 

enhance interpretability. This combination aims to refine training algorithms and make the learning 

process of AI agents more transparent and interpretable [3][4]. The significance of this research lies in 

its potential to bridge the gap between advanced RL applications and the need for transparency in AI 

decisions. By enhancing the understandability of AI actions, this study contributes to making AI 

technologies more accessible and trustworthy for critical applications. Additionally, the project's 

outcomes could provide valuable insights for the development of RL systems that require a high degree 

of decision-making transparency, paving the way for future innovations in both gaming and real-world 

applications where understanding AI decisions is crucial. 

2.  Concepts and application 

2.1.  Breakout 

Breakout is a classic Atari 2D game where players score points by controlling the paddle at the bottom 

of the screen to catch and bounce the ball, breaking multiple layers of bricks at the top. Due to its 

dynamic image state and real-time interaction, online reinforcement learning algorithms are primarily 

used. This study focuses on the PPO algorithm for its stability and efficiency.  

2.2.  Reinforcement Learning 

PPO iteratively updates policy parameters to maximize expected cumulative rewards while constraining 

policy changes to prevent significant deviations [3]. However, it faces challenges in balancing 

exploration and exploitation, where conservative updates may lead to slow learning, and aggressive 

updates can destabilize training.  

The author made equivalent dimension reduction in strategic space. In the Breakout environment, a 

four-dimensional strategy space can be equivalently represented as a three-dimensional space by 

combining Fire and Noop actions, improving the algorithm's fitting ability and reducing model 

complexity. 

The author combined a vectorization environment with a near-end gradient optimization algorithm 

(PPO) to make full use of CPU thread resources and improve training efficiency exponentially[3][5]. 

States between different environments diverge quickly, allowing synchronous updates during 

asynchronous execution. 

              

Figure 1. Asynchronous execution status in vectorized environment. (a. Agent updates synchronously 

despite asynchronous environment progress; b. Environments update independently, improving training 

efficiency.) 

To control the error of return expectation, the algorithm integrates KL divergence restrictions with 

return estimation clipping. A hyperparameter threshold is set, where updates are performed only if the 

KL divergence remains within this threshold, otherwise, return estimates are clipped. 

The author added three different regularization methods in the gradient update stage, which more 

cleverly balances the stability and generalization of the neural network than the traditional method. 

Dominance function normalization: In the update stage, the small-batch dominance function is 

normalized 
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 𝐴′(𝑠𝑡 , 𝑎𝑡) =  
𝐴(𝑠𝑡,𝑎𝑡)−𝐸[𝐴(𝑠𝑡,𝑎𝑡)]

𝑣𝑎𝑟[𝐴(𝑠𝑡,𝑎𝑡)]
 (1) 

Gradient clipping: This paper limited the gradient to a pre-set threshold range c. If the L2 norm of 

the gradient is greater than this threshold, the L2 norm of the gradient is scaled to the threshold size 

without changing the direction of the gradient, which is formalized as follows 

 𝑐𝑙𝑖𝑝(∇𝑓) = {

𝑐∙∇𝑓

‖∇𝑓‖2
, 𝑖𝑓 ‖∇𝑓‖2 > 𝑐

∇𝑓, 𝑒𝑙𝑠𝑒
 (2) 

Entropy regularization loss: The uncertainty of a random variable can be measured by using the 

entropy regularization term. The author subtracted the entropy regularization term for the probability of 

each action strategy in a small lot from the loss function, as shown below. 

 ℒ𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ ∑ 𝑃𝑖 ⋅ log 𝑃𝑖
4
 𝑖=1

𝑏𝑎𝑡𝑐ℎ
  (3) 

By incorporating prior human knowledge into the model through reward mechanism adjustments, 

including life loss feedback and ineffective strategy punishment, the agent's scoring ability and 

anthropomorphic performance are improved. 

To simplify the input state space, preprocessing steps include image resizing and grayscale 

conversion, reducing computational load and model training difficulty. Multi-frame stacking provides a 

comprehensive dynamic view of the environment, while a frame playback buffer maintains a queue to 

update frames continuously. Input normalization maps image pixel values to the [0, 1] interval, 

optimizing the network's learning process and ensuring training stability. Table 1 shows the value and 

remarks of hyperparameter. 

Table 1. Value and remarks of hyperparameter. 

TOTAL_TIMESTEPS                                     50000000 Total time steps for training 

LEARNING_RATE_1 2.5 e-4 The segmented initial learning rate for the first half of the iteration 

LEARNING_RATE_2 1E-6 The segmented initial learning rate for the second half of the iteration 

NUM_ENVS  8 Vectorized number of parallel environments 

NUM_STEPS 128 The number of sampling steps of data used in one iteration 

GAMMA 0.99 
The exponential moving average coefficient used to calculate the 

return 

LAMBDA 0.95 Exponential moving average coefficient for the advantage function 

NUM_MINIBATCHES  4 
The number of small batches (not the number of samples in small 

batches) 

UPDATE_EPOCHS 4 Number of updates 

CLIP 0.1 Return clipping (limiting the probability ratio to 1±CLIP) 

ENT_COEF 0.01 Entropy regular term coefficient 

VF_COEF 0.5 Value function mean square loss coefficient 

MAX_GRAD_NORM 0.5 Gradient clipping upper bound 

TARGET_KL 0.12 KL divergence upper bound 
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2.3.  Application of Machine Learning 

2.3.1.  Algorithm research and comparison. To facilitate the elaboration of the subsequent research 

results, the author let the Markov decision process be expressed as (S, A, P, R), where: 

S: state space, representing the set of all possible states.  

A: action space, which represents the set of all possible actions.  

P: Transition probability function, representing the probability of moving to the next state s' given 

state s and action a, denoted as s, can also be expressed as, i.e𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1]𝑃(𝑠, 𝑎, 𝑠′) =
𝑝(𝑠′ ∣ 𝑠, 𝑎). The given | here is the conditional probability, i.e., the probability of s' given s and a.  

R: reward function, which represents the reward obtained at a given state s, denoted R(s).𝑅: 𝑆 → ℝ 

This research compares the white box algorithm of interpretability algorithm (i.e., machine learning 

algorithm) for the purpose of the project, training an interpretable model based on the trained 

reinforcement learning model and the data generated by the interaction with the environment (breakout 

environment provided by OpenAI), and given a state, The output of this model can be consistent with 

the output of the reinforcement learning model, i.e[6][7]. : 

 𝜋(𝑠)  =  𝜋∗(𝑠) (4) 

Where, is the strategy learned by the reinforcement learning model, is the strategy learned by the 

interpretable white box model, and s is the current state [1]. 

To achieve this, the author was faced with two questions, the first one is data acquisition.  

To acquire the data, the model receives states as inputs and outputs actions during its interaction with 

the Breakout environment. In each iteration, all state-action (s-a) pairs are formed into a sub-dataset, 

and all sub-datasets together form the final dataset. This data is used to train the white-box model. Note 

that the state in the Breakout environment is actually an image and belongs to high-dimensional data, 

making it difficult to understand. Therefore, the author used computer vision technology to extract a 

state vector from each frame image, which includes the ball's motion direction on the X and Y axes, the 

ball's position (x, y coordinates), and the paddle's X coordinate: 

 𝑠∗ = (𝑣𝑥 , 𝑣𝑦, 𝑥, 𝑦, 𝑥𝑝) ∈ 𝑆∗ (5) 

i.e., there is a transition function: 

 𝑡 ∶ 𝑆 → 𝑆∗ (6) 

With this feature extraction, the author got data pairs of the form, which provide the data needed to 

train the white-box model. 

 𝑆∗ × 𝐴 (7) 

Another one is model selection.  

In the Breakout environment [8], the reinforcement learning model receives states as inputs and 

outputs one of four possible actions. This process can be viewed as a classification task. The author 

tested the performance of several classical interpretable classification models, various decision tree 

model variants, and several ensemble learning models. In terms of imitation learning methods, the author 

studied the effects of direct training and training with the Q-DAGGER [4] algorithm on training 

efficiency. In parameter adjustment, the author experimented with decision trees of different depths and 

different numbers of nodes. 

The core of the gradient enhancement algorithm [9] is to use the negative gradient of the loss function 

to guide the learning of the model. Let's say our goal is to minimize the loss function(𝐿(𝑦, 𝐹(𝑥))), where 

the true value is the predicted value of the model(𝑦).In each iteration, the author wanted to add a new 

model (ℎ(𝑥))that minimizes the loss function. 

Initialize the model: The author started with an initial model, usually an average of the data or a 

constant that minimizes the loss function. 
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Iterative enhancement: In each iteration, the author calculated the negative gradient of the loss 

function, i.e., the residual:  

  (8) 

Then, the author trained a new model to predict these residuals. 

Update model: The author updated our model by adding a scaled new model: 

  (9) 

Among them,(𝑣) is the learning rate, which controls how much you update at each step.  

Loss function optimization: By choosing(ℎ𝑖(𝑥)) to minimize the loss function, the author could 

ensure that each step moves in the direction of loss reduction.  

Comparison of models trained based on Q-DAGGER simulation learning algorithm is shown in 

Table 2[4]. 

Table 2 shows the performance of the model trained based on Q-DAGGER simulation learning 

algorithm [4]. It can be seen from the table 2 that the gradient enhancement algorithm has the best 

performance, so the author chose it as the training algorithm for the final model. 

Table 2. Model performance based on Q-DAGGER simulation learning algorithm training. 

Model CART decision tree Random Forest Gradient Enhancement 

Accuracy 0.79 0.85 0.9 

Recall rate 0.79 0.85 0.88 

F1-score 0.79 0.86 0.89 

Reward 21.2 43.6 123.6 

2.3.2.  Experimental process. Seven key steps make up the experimental process: data collection, 

preprocessing, parameter setting, model training, model comparison, cross-validation, and performance 

evaluation. 

Firstly, the author recorded the interactions between the PPO model and the game environment, 

specifically capturing state-action data pairs that collectively form our datasets. Secondly, this step 

involves performing the necessary preparations on the dataset. The author identified templates for each 

data pair and extracted the ball's horizontal and vertical coordinates, as well as the paddle's horizontal 

coordinates. In order to create a dataset of feature-action pairs, the author also calculated the ball's speed 

by analyzing its position before and after each data pair. Thirdly, for algorithms such as CART decision 

trees, random forests, and gradient boosting, the author adjusted key parameters, including the number 

of trees, depth, and learning rate, to determine the optimal configuration. Fourthly, using the prepared 

dataset, the author trained various models with different parameters to identify the one that performed 

best. Fifth, the author tests the best-performing model in the breakout environment to compare it to the 

baseline PPO model. Sixthly, the author used the K-fold cross-validation method to assess the stability 

and generalizability of the model. Finally, the author uses metrics like accuracy rate, recall rate, and F1 

score to compare the model's performance to an oracle. 

2.3.3.  Parameter optimization and experimental comparison. The gradient enhancement model 

algorithm training based on Q-DAGGER simulation learning algorithm has achieved the best effect in 

all models, and in terms of parameter adjustment, it needs to be optimized [4]. Here is the cross-

validation comparison of our experimental data: 
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Figure 2. Line chart of fit rate and average fit rate 

of the model based on 5000 decision tree 7 

maximum tree depth. 

Figure 3. Line graph of fit rate and average fit 

rate of model based on 0.01 learning rate 7 

maximum tree depth 

 

Figure 4. Line graph of fit rate and average fit rate of model based on 0.01 learning rate 5000 decision 

tree. 

As shown in Figure 2, Figure 3, and Figure 4, the learning rate is 0.01, the maximum depth of the 

tree is 7, and the total number of decision trees is 5000. The trained model has the best performance; it 

is also the final model selected. We display the model's performance below: 

  

Figure 5. Line chart of reward and average 

reward during 45 iterations of the model. 

Figure 6. Line graph of fit rate and average fit 

rate during 45 rounds of model iteration. 

Figure 5 shows the reward and average reward during 45 iterations of the model. The reward curve 

demonstrates the model's learning progression, where an upward trend indicates improving performance 

as the model becomes more adept at maximizing rewards in the Breakout environment. The average 

reward curve smooths out the fluctuations, providing a clearer picture of the overall trend and confirming 

the model's learning stability over time. Figure 6 depicts the fit rate and average fit rate during 45 rounds 
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of model iteration. The fit rate represents how well the model's actions match the optimal ones during 

training. A higher fit rate indicates better performance in terms of making correct decisions. The average 

fit rate provides a smoothed version of this metric, showcasing the model's improvement in decision-

making accuracy as training progresses. 

3.  Analysis of Results 

3.1.  Reinforcement learning 

 
 

Figure 7. PPO Model 1 Score curve with 

training.  

Figure 8. Model 1 is the score chart for each 

game in the test with an average score of 666.9. 

The abscissa is the training duration (hours), and the ordinate is the model's score in one game. The light 

color is the actual score data and the dark color is the smoothed score data. 

  

Figure 9. Model 2 score curve with training. 
Figure 10. Model 2 score chart for each game 

in the test with an average score of 499.7. 

Figures 7, 8, 9, and 10 compare the performance of two different models, Model 1 (PPO) and Model 

2 (an alternative model). Figures 7 and 8 focus on Model 1. Figure 7 shows the score curve with training, 

where the x-axis represents training duration in hours, and the y-axis represents the model's score in one 

game. The light color indicates actual score data, while the dark color shows smoothed data. The upward 

trend reflects Model 1's performance improvement over time. Figure 8 shows the score chart for each 

game in the test, with an average score of 666.9, indicating the PPO algorithm's consistent high 

performance and stability. 

Figures 9 and 10 focus on Model 2. Figure 10 shows the training score curve, similar to Figure 7. 

Figure 9 shows the score curve with training, similar to Figure 7. The score curve for Model 2 shows 

slower improvement and more pronounced fluctuations, indicating less stability and efficiency 

compared to Model 1. Figure 10 presents the score chart for each game in the test, with an average score 

of 499.7, highlighting that Model 2, while moderately effective, does not achieve the same level of 

consistency and high scores as Model 1. 
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3.2.  Interpretability algorithm 

 
 

Figure 11. Line chart of reward change and 

average reward for ten rounds of games in the 

final model. 

Figure 12. Line chart of fit rate change and 

average fit rate for ten rounds of final model 

games. 

 

 

Figure 13. F1 score change and average F1 score line graph of the final model ten rounds game. 

Figure 13 displays the F1 score change and the average F1 score line graph of the final model for the 

ten-round game. 

The author ultimately chose the condensation simulation learning interpretability model from Figures 

11, 12, and 13, using the Q-DAGGER [4] algorithm framework, and adopted a gradient-enhanced 

integrated learning algorithm based on a CART decision tree [7]. The parameters are set as follows: The 

parameters are set as follows: 5000 decision trees, a learning rate of 0.01, and a maximum depth of 7 

for the decision tree. Ultimately, following multiple iterations and training learning, the model's final 

output reveals an average action fitting rate of 84%, an average F1 score of 0.84, and an average reward 

of 120 points resulting from the actual interaction with the breakout environment. 

3.3.  Interpretability analysis 

('vector X for ball', 0.08479988978768412) 

('vector Y for ball', 0.20390364198387242) 

('coordinate X for ball', 0.26087393167295003) 

('coordinate Y for ball', 0.2679382512176707) 

('coordinate X for board', 0.1824828533782274) 

It can be seen from above that the feature importance of the contribution of different environmental 

features to behavior prediction, among which the X vector features of the ball can best reflect the 

behaviors that affect the decision tree model, can lay a foundation for our preliminary understanding of 

the action of the decision tree [10]. 
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Figure 14. The decision tree with the highest contribution from the final model.  

Figure 14 illustrates the situation. The coordinate Y for the ball is less than 161.5. This is the decision 

rule for the node. It means that for the current node, if the value of the ball's ordinate is less than or equal 

to 137.0, the data will flow along the left branch; if it is greater than 137.0, it flows along the branch on 

the right. 

friedman_mse = 0.03: This is the quality measure of the partition of this node. The Friedman mean 

square error (MSE) is a segmentation quality measure specific to gradient-enhanced models that takes 

into account the difference in mean values of the segmented child nodes and the sample weights. The 

value of 0.02 here represents the quality of the segmentation at that node and represents the difference 

in the target value of the segmented child nodes. 

samples = 9: This indicates the total number of samples that were processed by that node. In this 

example, there are 9 samples of training data that satisfy the decision rule for the node. 

The gradient-enhanced internal decision tree operates through a specific degree of regression task, 

resulting in a value of -0.67. This is because the model performs a weighted centralized output across 

all decision trees, ultimately achieving the target value through the computation of a weighted formula 

based on the learning rate. The value here represents the predicted value of the corresponding category 

of the current decision tree under this branch. Simultaneously, the author applied the aforementioned 

rules to each sub-node of 5000 decision trees, thereby determining the action probability of the decision 

tree under any environmental feature. This was achieved through complex calculations that took into 

account the influence of features on node segmentation, as well as the characteristics and sample flow 

of the corresponding nodes. This approach allowed for relatively accurate reasoning and generalization 

of the model's action logic.4 

4.  Conclusion 

This project, which involved training a reinforcement learning agent in the OpenAI Gymnasium 

environment using algorithms such as PPO, Q-DAGGER, and gradient boosted decision trees, has 

produced significant results. The agent demonstrated robust performance improvements, especially with 

the PPO algorithm, showing a high score capability and a stable learning curve after extensive training 

and algorithmic refinement. The author also made strides in the interpretability of complex models by 

integrating machine learning techniques that mimic decision-making processes, which enhances the 

trustworthiness and understandability of the AI's decisions. However, the performance of our models 

heavily relies on the quality and diversity of the training data, suggesting that future research could 

benefit from exploring more diverse environments or multi-agent scenarios. Additionally, the 

computational demands of our project are substantial, and optimizing these algorithms for efficiency 

could be a focus for future iterations. Despite the progress in interpretability, we still need to make the 

decision-making processes of the models more transparent. Future studies could potentially explore 

novel visual or quantitative methods to further clarify AI decisions. 
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