

BLE Bluetooth remote-controlled car based on ESP32

Yuhe Tie1,2,*, Peiming Chen1,3, Yingqi Ma1,4

1College of computer and information science, southwest university, No. 2 Tiansheng

Road, Beibei District, Chongqing, China

21292270530@qq.com
32958128946@qq.com
42050174158@qq.com

*corresponding author

Abstract. With the rapid advancement of information technology, Bluetooth technology has

been widely used in the field of short-range wireless communication, playing an important role

in information exchange. As one of the main technologies for short-range wireless

communication, Bluetooth technology has broad application prospects, especially in robotic

applications such as remote-controlled cars. This paper provides a detailed introduction to the

design and implementation process of a Bluetooth remote-controlled car system based on the

ESP32. It covers the classic Bluetooth and Bluetooth Low Energy (BLE) functionalities of the

ESP32, the hardware design and assembly of the car (including the DC motor drive module,

Bluetooth module, and speed measurement module), and methods for establishing a connection

between the ESP32 and Bluetooth module, data transmission, and remote control of the car's

movement. The paper also evaluates the system's performance through experiments, discusses

the application and parameter adjustment of the PID control algorithm in enhancing speed

control, and finally summarizes the research findings and suggests directions for future work.

Keywords: Bluetooth technology, remote control, ESP32, PID control algorithm.

1. Introduction

With the rapid development of information technology, devices are becoming smaller and more

powerful. In the post-PC era, new devices represented by smart terminals and smartphones are gradually

replacing traditional desktop computers and laptops. These new smart terminals, integrating computing

and communication, demand lower power consumption, smaller size, and multiple communication

methods for information exchange. As one of the main short-range, low-power wireless communication

technologies, Bluetooth has been widely applied in the field of information exchange and transmission

[1].

With the rapid advancement of IoT technology, wireless communication and remote control play a

crucial role in smart devices and robotic applications. Bluetooth technology, as a short-range wireless

communication technology, is widely used in various fields, including remote-controlled cars. Remote-

controlled cars, a common robotic application, have significant educational and entertainment value.

This paper aims to design and implement a Bluetooth remote-controlled car system based on the

ESP32, achieving remote control and monitoring through Bluetooth communication technology. As a

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

25

powerful development board, the ESP32 integrates Wi-Fi and Bluetooth functionalities, characterized

by high performance and low power consumption, making it ideal for IoT applications.

In this paper, I will introduce the design and implementation process of the Bluetooth remote-

controlled car system. First, I will elaborate on the Bluetooth functionalities and working principles of

the ESP32, including classic Bluetooth and Bluetooth Low Energy (BLE). Then, I will introduce the

hardware design and assembly of the car, including the wiring and working principles of the DC motor

drive module, Bluetooth module, and speed measurement module.

Next, I will describe in detail how to use the ESP32 to communicate with the Bluetooth module,

including establishing a Bluetooth connection, sending and receiving data, etc. I will explain how to

remotely control the car's movements through a Bluetooth connection, including moving forward,

backward, left turn, and right turn. Additionally, I will introduce how to use the speed measurement

module to monitor the car's speed in real-time and perform feedback control.

To evaluate the system's performance, I will conduct a series of experiments and analyze the results.

I will explore the application of the PID control algorithm in car speed control and discuss how to adjust

PID parameters to achieve better control performance. Moreover, I will study performance indicators

such as overshoot, settling time, and steady-state error of the system.

Finally, I will summarize the work of this paper and propose future work directions. I will discuss

how to further improve the system's functionality and performance, such as adding obstacle avoidance

functions and optimizing control algorithms.

2. Overall System Design

In implementing the Bluetooth remote-controlled car system based on the ESP32, it is divided into five

modules: remote control device module, ESP32 main control module, motor drive module, power

management module, sensor module, and PID adjustment module.

Remote Control Device Module: The remote control device is the user's control apparatus, which

can be a smartphone, tablet, or dedicated remote control. The remote control device communicates with

the ESP32 via Bluetooth, transmitting the user's commands to the ESP32 to control the car's movement.

ESP32 Main Control Module: The ESP32 main control module is the core of the entire system,

responsible for receiving commands from the remote control device and controlling the car's movement.

It includes the ESP32 development board and corresponding circuit connections, used to connect various

modules and execute control algorithms.

Motor Drive Module: The motor drive module is responsible for driving the car's motors, controlling

movements such as forward, backward, left turn, and right turn. It receives command signals from the

ESP32 and converts these signals into motor actions to control the car.

Power Management Module: The power management module provides stable power supply for the

entire system, including the ESP32 main control module and motor drive module. It may include

batteries, power adapters, and power management circuits to ensure the system's normal operation. In

this experiment, the power management module is realized through batteries.

Sensor Module: The sensor module can include a speed measurement module and other sensors, used

to obtain information about the car's speed, position, and environment. The speed measurement module

measures the rotation speed of the car's wheels to achieve speed control and position feedback.

PID Adjustment Module: The PID adjustment module ensures that the car's speed reaches stability,

forming a closed-loop control system.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

26

Figure 1. Overall Workflow of the Car

3. Hardware Connections and Principles

3.1. Working Principle and Wiring of the MX1919 DC Motor Driver Module

3.1.1. Working Principle of the MX1919 DC Motor Driver Module

The MX1919 DC motor driver module operates on the principle of an H-bridge driver, which can

achieve forward rotation, reverse rotation, and braking functions for a DC motor [2]. It typically consists

of the following key components:

H-Bridge Circuit: The H-bridge circuit is composed of four switches (usually MOSFETs) connected

to the two terminals of the DC motor. By controlling the on/off states of these four switches, the direction

of current flow can be changed, thus achieving forward and reverse rotation of the motor.

Control Logic Circuit: The control logic circuit receives external signals and generates corresponding

control signals to manage the switching states of the H-bridge circuit. Typically, the control logic circuit

receives signals from the main controller (such as the ESP32) or other control devices and controls the

motor's direction and speed based on the logical state of these signals.

3.1.2. Wiring of the MX1919 DC Motor Driver Module

Connecting the Power Supply:

Connect the power pins of the driver module (usually marked VCC and GND) to an external power

supply. Ensure that the voltage range of the power supply meets the requirements of the driver module.

Connecting the Motor:

Connect the two terminals of the DC motor to the two motor output interfaces on the driver module

(usually marked M1 and M2). Ensure that the motor's connection polarity matches the interface polarity

of the driver module. If the motor's rotation direction does not match the expectation, swap the motor's

terminal connections.

Connecting Control Signals:

Connect the control pins of the driver module (usually marked IN1, IN2, IN3, and IN4) to the GPIO

pins of the main controller (such as the ESP32). By controlling the logical states (high or low) of the

GPIO pins, you can control the switching states of the H-bridge circuit in the MX1919 driver module,

thus controlling the motor's rotation direction and operating state.

3.2. Principle of ESP32 Bluetooth BLE Communication

The most critical part of the Bluetooth transmission system is the realization of BLE communication

functionality. BLE communication follows the same principle as traditional Bluetooth communication,

where a Bluetooth master device uses a Bluetooth chip to enable devices to send and receive radio

signals over short distances to find a Bluetooth slave device [3].

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

27

When using ESP32 for Bluetooth BLE communication, it is a low-power wireless communication

technology suitable for IoT devices and sensors. The ESP32 integrates a complete BLE protocol stack,

including the physical layer, link layer, host controller interface (HCI), and general attribute (GATT)

protocol modules. The BLE communication process includes broadcasting, scanning, and connecting

operations, managed by the GAP (Generic Access Profile) module. The GATT protocol defines data

transmission methods between BLE devices, including concepts such as services, characteristics, and

descriptors. The ESP32 provides a BLE library that simplifies the process of creating BLE services,

characteristics, and descriptors for developers. The ESP32 Bluetooth BLE communication offers

advantages such as low power consumption, fast connection, and simplified data transmission methods,

making it suitable for IoT applications, sensor data collection, and remote control scenarios. This

technology's widespread application provides strong support for the development of the IoT field.

3.3. Working Principle and Wiring of the DC Motor

3.3.1. Working Principle of the DC Motor

The working principle of a DC motor is based on the generation of torque by current in a magnetic field.

By controlling the direction and magnitude of the current, forward and reverse rotation of the DC motor

can be achieved. When rotating forward, the interaction between the current and the magnetic field

generates rotational torque; when rotating in reverse, the interaction generates torque in the opposite

direction [4]. Control methods include changing the current direction, altering the voltage polarity, and

using external circuits and drivers.

3.3.2. Wiring of the DC Motor

1. Connect the positive terminal (+) of the power supply to the positive terminal (+) of the DC motor.

2. Connect the negative terminal (-) of the power supply to the negative terminal (-) of the DC motor.

3. Connect the control signal lead to the output end of the controller or driver to control the motor's

movement.

Figure 2. Overall Wiring Diagram of the DC Motor

4. Software Design

The system software concerns the reliability and applicability of the system. To optimize the software,

the following two points need to be focused on during the design process:

High Integration: To meet the demands of low-cost innovation, the system space needs to be

minimized as much as possible, allowing limited units to accommodate an unlimited number of module

circuits. This requires a rational overall layout design in the system solution, where identical network

interfaces should be placed together to reduce safety distances. Heat-generating components should be

close to heat sinks and edges to facilitate heat conduction, thereby improving product reliability.

Considering these factors, modular units should be designed to reduce system control complexity and

promote integration, which helps reduce design and maintenance costs.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

28

4.1. How to Control the Car’s Forward, Backward, Left Turn, Right Turn, and Straight Line

Movement

4.1.1. Controlling the Car’s Forward, Backward, Left Turn, and Right Turn

Forward: Simultaneously rotate both drive motors in the same direction and at the same speed to move

the car forward. The control signals should cause the motors to rotate forward.

Backward: Simultaneously rotate both drive motors in the reverse direction and at the same speed to

move the car backward. The control signals should cause the motors to rotate in reverse.

Left Turn: Stop or slow down the left drive motor while the right drive motor rotates forward to turn

the car left. The control signals should stop or slow down the left motor and rotate the right motor

forward.

Right Turn: Stop or slow down the right drive motor while the left drive motor rotates forward to

turn the car right. The control signals should stop or slow down the right motor and rotate the left motor

forward.

In the code, forward movement is implemented as follows:

void Forward() {

 ledcWrite(2, PWM_Left);

 ledcWrite(1, 0);

 ledcWrite(3, PWM_Left);

 ledcWrite(4, 0);

 }

For backward, left turn, and right turn, adjust the positions of PWM_Left and PWM_Right

accordingly.

4.1.2. Controlling the Car to Move in a Straight Line

PID control, a classic control method, is widely used in industrial control to ensure the normal operation

of industrial processes [5]. In this experiment, PID control is used to make the car move in a straight

line. The PID controller adjusts the control signal based on the current error (the difference between the

actual value and the target value) using proportional, integral, and derivative terms to keep the car on a

straight path. The basic steps to control the car in a straight line using a PID controller are as follows:

Set the Target Value: Determine the target position or direction when the car moves in a straight line.

This can be a specific position coordinate or direction angle.

Get Feedback Signal: Use sensors (such as encoders or gyroscopes) to obtain feedback signals of the

car's current position or direction.

Calculate Error: Compare the target value with the actual feedback signal to calculate the current

error. The error can be position deviation, direction deviation, or a combination of both.

Set PID Parameters: Adjust the proportional (P), integral (I), and derivative (D) coefficients of the

PID controller. The choice of these parameters depends on the car's characteristics and control system

requirements.

Calculate Control Signal: Use the PID formula to calculate the control signal based on the current

error and PID parameters. The control signal can represent the motor speed or the output of the motor

driver.

Apply Control Signal: Apply the calculated control signal to the drive motors to adjust their speed or

direction, making the car move towards the target straight line.

Continuous Update: Continuously obtain feedback signals, calculate errors, compute control signals,

and periodically update controller parameters to keep the car on the straight path.

4.2. Design of Single Closed-Loop DC Speed Control System

Controller Design: Design a PID controller to regulate the speed. The PID controller consists of

proportional (P), integral (I), and derivative (D) components. It generates control signals by calculating

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

29

the weighted sum of current and historical errors. The selection and adjustment of PID parameters are

crucial for system performance.

Feedback Signal Processing: Obtain feedback signals of motor speed through sensors and compare

them with the target speed. Calculate the error signal based on the comparison results, which serves as

the input to the PID controller.

Control Signal Generation: The PID controller calculates the corresponding control signal based on

the error signal, usually represented as motor input voltage or duty cycle. The method of generating

control signals may vary depending on the characteristics of the motor driver and control requirements.

Output Signal Conversion: Convert the control signal into a form suitable for the motor driver to

achieve motor control. This may involve voltage conversion, current amplification, or using PWM

(pulse-width modulation) techniques.

Closed-Loop Control: Feed the output signal back into the feedback loop, compare it with the target

speed to achieve closed-loop control. Continuously adjust the control signal to make the actual motor

speed gradually approach the target speed.

Stability and Performance Optimization: Optimize the system's stability and performance, such as

through appropriate PID parameter adjustment, filter design, saturation limits, and enhanced anti-

interference capabilities.

void ComputeSpeed() {

Speed_Left=counter_left/40.0/0.4*60;

counter_left=0;

Speed_Right=counter_right/40.0/0.4*60;

counter_right=0;

PWM_Left=LeftComputePID();

PWM_Right=RightComputePID();

}

4.3. PID Parameter Tuning

In this experiment, manual tuning was chosen for PID parameter adjustment through a trial-and-error

method. Initially, set the P, I, and D parameters to small values. Gradually increase the P parameter and

observe the system's response. Increasing the P parameter can enhance the system's response speed, but

an excessive P value may cause system instability. Next, gradually increase the I parameter and observe

the system's overshoot and steady-state error. Finally, gradually increase the D parameter and observe

the system's anti-interference capability and stability. Through iteration and fine-tuning, an appropriate

combination of PID parameters was found [6]. The final suitable combination was kp = 0.4, ki = 0.3, kd

= 0.1. The overshoot ranged from 2.5 to 7, the settling time was around 10 seconds, and the steady-state

error ranged from 2% to 5.83%.

4.4. Software Flowchart

Based on the system design in the previous chapters, the software flowcharts are drawn as shown in

Figure 3 for PID software, Figure 4 for controlling the car’s forward, backward, left turn, and right turn,

and Figure 5 for controlling the car to move in a straight line.

Figure 3. PID Software Flowchart

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

30

Figure 4. Flowchart for Controlling the Car’s Forward, Backward, Left Turn, and Right Turn

Figure 5. Flowchart for Controlling the Car to Move in a Straight Line

5. Conclusion

During the debugging process, the main issue encountered was the instability of the car's Bluetooth

signal connection, which caused the PID control to fail when the Bluetooth connection was lost. It was

eventually found that connecting the car to the computer via USB significantly improved the stability

of the Bluetooth signal, effectively resolving this issue.

This experiment profoundly demonstrated the importance and broad application prospects of

Bluetooth Low Energy (BLE) technology. The ESP32, as a powerful development board, integrates rich

Bluetooth functionalities, including BLE communication. Using the ESP32's BLE capabilities, stable

wireless communication with a mobile phone was successfully achieved, making the phone the car’s

remote controller. Additionally, an in-depth understanding of the ESP32's programming and

development environment was gained, and the use of the Arduino IDE and the ESP32 development

library simplified the coding process. The versatility and libraries provided by the ESP32 enabled the

rapid development of a highly controllable Bluetooth remote control car.

Moreover, the practice highlighted the importance of correctly designing hardware circuits and

wiring. Ensuring proper connection and configuration of the MX1919 DC motor driver module,

Bluetooth module, and other related components is crucial for signal transmission and power supply

stability, directly affecting the system's overall performance. Additionally, this practice explored the

theory and application of PID controllers. Through appropriate PID parameter adjustment and

optimization, stable straight-line driving of the car was achieved, significantly enhancing the system's

response speed and accuracy. Although debugging and optimizing the PID controller requires patience

and experimentation, the final control effect is satisfactory.

Acknowledgement

Yuhe Tie and Peiming Chen: Conceptualization, Methodology, Software, Resources, Writing- Original

draft preparation, Visualization, Investigation.

References

[1] Niu Yufeng. Research on Enhancing Bluetooth Data Transmission Performance and Chip

Implementation Technology. Xidian University, 2012.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

31

[2] Zhang Dongqing. Design of a DC Servo Motor Driver. Hangzhou Dianzi University, 2012.

[3] Luo Fucai. Research and Implementation of Bluetooth Communication System Based on Android

Platform [D]. North China Electric Power University, 2013.

[4] Zhong Yuexian, Lin Heng. Computer Control of Mechanical Systems. Tsinghua University Press,

2001-8-1.

[5] Huang Yiqing. Research on PID Controller Parameter Tuning and Its Application [D]. Anhui

University of Science and Technology, 2009.

[6] Zhang Heng. Research on Sensorless Vector Control Technology of Electric Tail Rotor for

Unmanned Helicopter. University of Electronic Science and Technology of China, 2020.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/81/20240965

32

