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Abstract. In recent years, deep learning-based techniques have revolutionized real-time ray 
tracing for gaming, significantly enhancing visual fidelity and rendering performance. This paper 
reviews various state-of-the-art methods, including the use of Generative Adversarial Networks 
(GANs) for realistic shading, the use of neural temporal adaptive sampling, the use of subpixel 
sampling reconstruction, and the use of neural scene representation. Key findings highlight 
improvements in perceived realism, temporal stability, image fidelity, and computational 
efficiency. Techniques such as neural intersection functions and spatiotemporal reservoir 
resampling further optimize rendering speed and memory usage. Additionally, approaches like 
adaptive sampling and neural denoising using layer embeddings contribute to reduced noise and 
enhanced image clarity. Collectively, these advancements make real-time ray tracing more 
feasible for high-fidelity gaming applications, offering enhanced graphics without compromising 
performance. These improvements are significant. My analysis underscores the critical role of 
deep learning in overcoming traditional ray tracing challenges, paving the way for more 
immersive and responsive gaming experiences. Furthermore, these innovations suggest a 
promising future for integrating advanced ray tracing techniques into a broader range of 
interactive media, ensuring both visual excellence and operational efficiency. 
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1.  Introduction 
Given this promising future, real-time ray tracing has long been a coveted goal in the gaming industry, 
promising unparalleled visual realism by accurately simulating the behavior of light. However, the 
computational demands of ray tracing have historically restricted its use to offline rendering or required 
significant compromises in frame rates and interactivity. The advent of deep learning has opened new 
avenues for overcoming these challenges, enabling the integration of sophisticated ray tracing 
techniques in real-time applications. This paper surveys recent advancements in deep learning-based 
real-time ray tracing, focusing on methods that enhance visual quality and computational efficiency. 

I begin by exploring the application of Generative Adversarial Networks (GANs) to enhance shading 
and coloring in dynamically lit scenes. Further, I examine neural temporal adaptive sampling and 
denoising techniques that adapt to scene variations, reducing noise and improving image quality. 
Subpixel sampling reconstruction methods and neural scene representations are also discussed for their 
contributions to maintaining high visual fidelity in real-time. Additional sections delve into innovations 
such as neural intersection functions and spatiotemporal reservoir resampling, which streamline 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/101/20240992 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

124 



 

 

computational processes and improve memory management. By synthesizing findings from various 
studies, this paper provides a comprehensive overview of how deep learning is transforming real-time 
ray tracing in gaming, making high-quality graphics more accessible and efficient. 

2.  Deep learning-based real-time ray tracing technology in games 
When it comes to deep learning-based real-time ray tracing techniques for gaming, there are several 
notable contributions in the field. Arturo, Szabolcs, and James propose the use of Generative Adversarial 
Networks (GANs) to enhance the realism of real-time rendered scenes [1]. A Generative Adversarial 
Network (GAN) is a deep learning architecture consisting of two neural networks competing with each 
other to generate new, more realistic data from a given training dataset. The generator network produces 
images, while the discriminator network evaluates them against real images from the training dataset. 
Specifically, the GAN was trained on high-quality image datasets to learn realistic coloring and shading 
effects. Once trained, the generated adversarial shaders are applied to the rendered scene, enhancing its 
visual quality, particularly in dynamic lighting conditions. Their findings show that this approach 
improves perceived realism by 20% after careful user research and comparative analysis. Moreover, the 
additional computational overhead associated with this enhancement is minimal, making it suitable for 
real-time applications in games. This method effectively bridges the gap between high-quality offline 
rendering and real-time performance, providing significant visual enhancements without compromising 
speed. 

In addition to GANs, Jon et al. propose a neural method for temporal adaptive sampling and 
denoising in real-time ray tracing, which addresses the challenge of rendering high-quality images 
efficiently [2]. The method employs a neural network to guide the sampling process based on temporal 
coherence and scene variations. Specifically, the network evaluates the temporal coherence of pixels 
and adjusts the sampling rate dynamically. Areas of the scene with higher temporal variation receive 
more computational resources, while more stable areas require fewer samples. This adaptive sampling 
is paired with a deep learning-based denoiser that further enhances image quality by reducing noise. The 
neural network's ability to predict and adjust sampling rates in real-time is crucial for maintaining a 
balance between performance and visual fidelity. As shown in the Figure 1, the experimental results 
show that this technique improves temporal stability by 40%, significantly reducing rendering artifacts 
compared to non-adaptive methods. Consequently, it results in smoother animations and higher image 
quality in real-time applications, thereby enhancing the overall gaming experience by providing 
consistent and visually appealing frames.  

 
Figure 1. Image quality comparison between the adaptive method, deep adaptive sampling and 
reconstruction (DASR), spatiotemporal variance-guided filtering (SVGF), and the recurrent autoencoder 
(RAE) on the SUNTEMPLE scene [2]. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/101/20240992 

125 



 

 

Boyu et al. propose a subpixel sampling reconstruction technique for real-time rendering, aimed at 
significantly enhancing the visual quality of rendered scenes [3]. They trained a deep learning model to 
reconstruct high-quality frames from low per-pixel sampled image sequences. The network predicts 
missing subpixel data, which allows it to generate temporally stable video outputs that maintain high 
visual fidelity. This method leverages spatio-temporal coherence to ensure consistency across frames, 
enhancing the visual smoothness of dynamic scenes. By understanding the spatio-temporal relationships, 
the model can accurately reconstruct fine details, reducing the visual discrepancies between frames. 
Experimental results demonstrate that this technique improves image fidelity by a factor of 2 compared 
to conventional methods, effectively reducing temporal artifacts and providing a more seamless viewing 
experience. It achieves real-time frame rates, making it suitable for interactive applications such as 
gaming. This approach significantly enhances the visual experience of real-time rendered scenes by 
providing high-quality, consistent images without compromising performance. 

Julian et al. propose an advanced neural scene representation that effectively combines a symbolic 
distance function (SDF) and a multilayer perceptron (MLP) to render high-quality geometries and 
spatially varying reflectance [4]. The SDFs are used to represent the scene's geometry, allowing for 
precise modeling of complex shapes and surfaces. Meanwhile, the MLPs are tasked with modeling the 
Bidirectional Scattering Distribution Functions (BSDFs), which are crucial for accurately depicting how 
light interacts with different surfaces. The rendering process involves using volumetric integration for 
primary rays, which helps in capturing detailed lighting effects. For secondary bounces, the method 
employs ray marching, a technique that balances memory efficiency with high rendering quality. This 
dual approach optimizes both memory usage and rendering time, making it highly suitable for real-time 
applications. These results demonstrate the practical advantages of the proposed method, significantly 
reducing memory usage and rendering time compared to traditional ray tracing techniques. These 
improvements make real-time ray tracing more feasible, particularly in dynamic scenes with complex 
lighting and geometry. This is because the method effectively reduces rendering artifacts and enhances 
overall visual quality. 

Shin, Chih-Chen, and Takahiro propose an innovative neural method for determining intersection 
points in ray tracing, aimed at enhancing both speed and accuracy [5]. Their approach involves training 
deep learning models on geometrically configured datasets to predict intersection points accurately. 
Traditional intersection tests in ray tracing are known to be computationally expensive and time-
consuming, often becoming a bottleneck in real-time rendering applications. By employing neural 
networks, they effectively replace these traditional intersection tests, significantly reducing the 
computational complexity and time required for these calculations. The deep learning model is capable 
of learning complex geometric relationships, allowing it to predict intersections more efficiently. Table 
1 indicates that the computation time for the neural intersection function is reduced by 25%, leading to 
substantial improvements in overall rendering performance. This enhancement not only speeds up the 
rendering process. It also makes real-time ray tracing more practical and efficient for interactive 
applications, such as gaming, where both speed and accuracy are critical.  

Table 1. Runtime performance of NIF and BVH-based implementation as a counterpart breakdown in 
microseconds, and statistics. (a) is the number of shadow rays cast. (b) and (c) are the number of rays 
processed by the outer network and inner network, respectively [5]. 

Scene DRAGON 
A 

DRAGO
N B 

CENTAUR 
A 

CENTAUR 
B 

THAI 
STATUE 

THAI 
STATUE 

LOW 

THAI 
STATUES 

STATUES 
A 

STATUES 
B 

# of 
Triangles 7.2M 7.2M 2.5M 2.5M 10M 0.5M 50M 17.5M 52.8M 

(a) 1.2M 1.3M 1.1M 1.2M 855K 855K 803K 855K 942K 

(b) 366K 387K 243K 285K 171K 172K 445K 376K 298K 

(c) 130K 141K 110K 126K 44K 44K 176K 124K 137K 
BVH Ray 

Cast 625.26 578.07 592.02 595.00 391.00 260.56 774.05 692.09 680.82 

NIF:          
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Ray Cast 139.49 135.53 123.39 120.77 86.21 91.8 119.86 113.05 141.01 

Outer Grid 49.55 34.85 37.99 29.99 21.43 21.09 49.3 43.34 45.55 
Outer 

Inference 185.12 193.19 127.17 144.57 92.15 92.23 220.67 189.91 153.24 

Inner Grid 46.1 48.78 45.09 41.12 37.66 37.7 67.6 54.59 63.07 
Inner 

Inference 84.75 88.08 72.53 81.03 36.18 35.81 108.98 81.93 88.67 

NIF Total 505.01 500.43 406.17 416.58 255.05 260.01 566.57 482.82 491.54 

Speedup 1.24 1.16 1.46 1.43 1.53 1.00 1.37 1.43 1.39 

 
Benedikt et al. propose a spatiotemporal reservoir resampling technique designed to enhance the 

efficiency and accuracy of direct lighting calculations in real-time ray tracing [6]. This method 
innovatively combines both spatial and temporal techniques to resample lighting information more 
efficiently. The spatiotemporal approach allows the technique to adapt to dynamic changes within the 
scene, ensuring that lighting calculations remain accurate and efficient over time. By using both spatial 
coherence (consistency across space) and temporal coherence (consistency over time), the method 
maintains high lighting accuracy while optimizing computational resources. The technique has been 
shown to improve rendering speed by 35%, a significant enhancement that makes it feasible for real-
time applications, particularly those involving dynamic scenes. Additionally, this approach effectively 
reduces lighting artifacts, leading to a more visually accurate and appealing representation of direct 
lighting in interactive settings. These improvements allow for high-quality direct lighting in real-time 
applications, significantly enhancing the visual fidelity and overall experience in games and other 
interactive media.  

Antoine, Lukas, and Lorenze propose a sophisticated real-time path tracing adaptive sampling and 
denoising technique grounded in reinforcement learning (RL) [7]. Their method employs a UNET-based 
architecture to generate detailed sampling maps, crucial for guiding the rendering process. The 
reinforcement learning component, which is crucial for dynamically adjusting the sampling rate based 
on the scene's complexity, ensures that computational resources are utilized efficiently. The neural 
network is trained to predict the optimal sampling pattern, which significantly enhances the rendering 
process by focusing on areas that require more detail and reducing effort in less complex regions. This 
adaptive approach, which results in a 30% improvement in sampling efficiency compared to static 
methods, effectively reduces noise and rendering time. Additionally, the technique effectively reduces 
noise and rendering time, ensuring that the visual quality of real-time path-tracing images remains high 
while maintaining interactive frame rates. These advancements, which ensure high visual quality while 
maintaining interactive frame rates, make the method particularly suitable for gaming applications, 
where both visual fidelity and performance are critical.  

Building on the need for interactive frame rates, Killian, Max, and Carsten delve into the 
development of a Minimal Convolutional Neural Network (CNN) architecture tailored for effective 
temporal anti-aliasing in real-time rendering [8]. The proposed CNN model is meticulously optimized 
for temporal consistency, which is essential for minimizing artifacts in dynamic scenes.  

Table 1. (continued). 
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Figure 2. Comparison between the CNN model, variance clipping TAA and the input including root-
mean-square errors (RMSE). Numbers are RMSE. The edges are very consistently antialiased without 
blurring (left) while vctaa noticeably degrades the sharpness in the orange closeup. The artifact on the 
lighting of the stairs (center) is not present in the CNN model [8]. 

 
Figure 2 shows the excellence of the CNN model. The architecture is designed to strike a balance 

between performance and visual quality, ensuring efficient processing without imposing significant 
computational demands. This balance is achieved through a streamlined network structure that processes 
temporal data to smooth out aliasing artifacts effectively. The experimental results are promising, with 
a 20% reduction in temporal artifacts and a 15% improvement in rendering efficiency compared to 
traditional anti-aliasing techniques. These improvements are particularly evident in scenes with motion, 
where the visual smoothness of the rendered image is crucial. By reducing visual distractions caused by 
temporal artifacts, this approach significantly enhances the gaming experience. The innovative 
application of a minimal CNN for temporal anti-aliasing underscores its potential to improve real-time 
rendering quality without compromising performance. 

Zander et al. conduct research focused on extending probe-based techniques for dynamic global 
illumination (GI) in real-time rendering [9]. Their approach leverages deep learning to optimize both 
the positions and update rates of light probes, which are crucial for capturing global illumination in 
dynamic scenes. Traditional GI methods can be computationally intensive, often struggling with the 
demands of real-time applications, particularly in complex scenes with dynamic lighting changes. By 
using deep learning, the researchers develop a system that dynamically adjusts probe placement and 
update frequency based on the scene's current state, thus improving the efficiency of GI computations. 
The results of their study are significant, showing a reduction in computational overhead by 50%. This 
substantial improvement makes real-time global illumination feasible even in complex scenes, enabling 
high-quality lighting effects without compromising performance. The ability to achieve such efficient 
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GI in real-time is particularly beneficial for gaming applications, where both visual quality and 
performance are critical.  

Ingo, Milan, and Stefan discuss the use of data parallelism in a multi-GPU environment to enhance 
the performance of path tracing, a computationally intensive process crucial for realistic image rendering 
[10]. They introduce a ray-queue loop mechanism, which is designed to distribute ray-tracing tasks 
efficiently across multiple GPUs by organizing the rendering tasks into a dynamic queue system. This 
distribution allows for the parallel processing capabilities of GPUs to be fully leveraged, significantly 
improving computational efficiency and rendering speed. By handling complex scenes more effectively 
through parallelism, their approach reduces the rendering time by up to 40%. The method works by 
organizing the rendering tasks into a queue system that dynamically allocates work to available GPU 
resources, ensuring that the workload is evenly distributed and that idle times are minimized. This 
optimization allows for the rendering of more complex scenes in real-time, particularly benefiting high-
fidelity gaming applications where both graphical detail and fast rendering are critical. The substantial 
reduction in rendering time and the improved overall performance make it feasible to achieve high-
quality visual effects in real-time, enhancing the immersive experience of games.  

Jacob and Jon propose a neural denoising method using layer embeddings to enhance the quality of 
real-time ray tracing images [11]. Their methodology involves a deep learning model that generates 
layer embeddings to guide the denoising process. These embeddings help the model differentiate 
between noise and actual image details, thus focusing on reducing noise while preserving important 
features of the image. As shown in Figure 3, the model is trained on a comprehensive dataset of ray-
traced images, learning the intricate patterns of noise typically found in such images. During the 
denoising phase, the model applies the learned embeddings to clean the images effectively, ensuring 
that the final output maintains high visual fidelity.  

 
Figure 3. Computational cost of the different algorithms at different sample counts, measured in number 
of FMAs (in billions) [11]. 

 
Quantitative analysis shows that the technique improves image quality by 25% compared to 

traditional denoising methods. Moreover, it substantially reduces the noise present in ray-traced images, 
leading to clearer and more detailed visuals. This enhancement is particularly beneficial for real-time 
applications in gaming, where maintaining high-quality graphics is essential. Additionally, the method 
reduces denoising time, thereby supporting real-time performance without compromising image quality. 
This neural denoising method, by improving visual fidelity and reducing processing time, demonstrates 
its suitability for high-demand gaming environments, where clear and detailed graphics are crucial. 

Joohwan et al. investigate methods to enhance real-time rendering accuracy under high latency 
conditions using post-render warping and post-input sampling [12]. Their methodology involves the use 
of deep learning to predict user input and adjust rendering in real time. The system anticipates the user’s 
actions and modifies the rendered frames accordingly, ensuring that the visual output remains responsive 
even with inherent latency. This deep learning model is trained on data representing various user inputs 
and latency scenarios, allowing it to make accurate predictions and adjustments on the fly. The results 
of this technique are notable, particularly in high-latency environments. It shows that targeting accuracy 
is improved by 30% under these conditions, which significantly enhances the responsiveness of real-
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time applications. This improvement is especially beneficial for competitive gaming, where even slight 
delays can adversely affect user performance. By mitigating the effects of latency, this approach ensures 
that players can interact with the game environment more accurately and effectively, thereby improving 
the overall gaming experience in high-stakes scenarios.  

Simon and Alper explore the use of compressed opacity mapping to enhance the efficiency of ray 
tracing algorithms [13]. Their methodology involves compressing opacity information to reduce the 
memory footprint and computational overhead associated with rendering scenes that feature complex 
transparency effects. This is achieved by encoding opacity data in a more compact form, which allows 
the ray tracing process to handle transparency more efficiently without the need for extensive memory 
resources. The key innovation in their approach, which involves the development of an optimized 
compression algorithm, maintains high visual fidelity while significantly reducing the amount of data 
that needs to be processed. This algorithm ensures that transparency effects are accurately represented, 
even in scenes with intricate details and multiple layers of transparent objects. The results of their 
method are substantial. It demonstrates that this approach reduces rendering time by 30%, enabling 
faster processing of complex scenes. Additionally, memory efficiency is improved by 20%, making it 
possible to handle more detailed scenes without overwhelming the system's resources. These 
improvements make real-time ray tracing of detailed scenes with high-quality transparency effects much 
more feasible, ensuring that performance is not sacrificed for visual quality. This advancement is 
particularly relevant for gaming applications, where maintaining a balance between performance and 
graphical detail is crucial for an immersive user experience. 

Jian et al. optimize real-time point cloud relighting by integrating Bidirectional Reflectance 
Distribution Function (BRDF) decomposition with ray tracing, leveraging deep learning models to 
decompose the BRDF into efficiently processable components [14]. This allows the models to predict 
lighting interactions and surface reflection properties with high accuracy. The methodology involves 
training the deep learning models on a dataset of point clouds under various lighting conditions, enabling 
them to learn how different surfaces reflect light. By breaking down the BRDF into simpler, manageable 
components, the models can quickly compute lighting effects without extensive computational resources. 
The approach significantly reduces computational overhead while maintaining high visual fidelity by 
breaking down the BRDF into simpler components. This is achieved by ensuring that each decomposed 
component of the BRDF can be processed in parallel, allowing faster calculations and enabling real-
time relighting. The deep learning models are also designed to adapt to dynamic lighting conditions, 
ensuring consistent performance across various scenarios. It reveals that this method results in a 
substantial reduction in processing time, enabling real-time relighting even for interactive applications 
such as games. Specifically, the technique reduces computational time by a notable margin, allowing 
for smoother and more responsive visual updates in real-time environments. This makes it particularly 
valuable for gaming applications, where dynamic lighting and high visual fidelity are essential for an 
immersive experience. 

3.  Conclusion 
The integration of deep learning techniques into real-time ray tracing represents a significant leap 
forward for the gaming industry. As my review demonstrates, methods leveraging GANs, neural 
adaptive sampling, subpixel reconstruction, and neural scene representation have collectively enhanced 
the realism, efficiency, and responsiveness of real-time rendering. These advancements, essential for an 
immersive experience, address long-standing challenges associated with high computational demands 
and latency, making high-quality graphics feasible in interactive applications. 

Given these advancements, future research is likely to focus on further optimizing these techniques 
to enhance their scalability and applicability to a wider range of hardware configurations. Additionally, 
exploring the integration of these methods with emerging technologies such as virtual reality (VR) and 
augmented reality (AR) could unlock new dimensions of immersive gaming experiences. The continued 
evolution of deep learning algorithms holds great promise for real-time ray tracing, pushing the 
boundaries of what is possible in gaming graphics and enabling more sophisticated and engaging 
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gameplay. Ultimately, deep learning is not just enhancing the visual experience but also driving 
innovation in game design and user interaction, heralding a new era of high-fidelity gaming.  
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