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Abstract. Drones can play a quite crucial role in many walks of life today. Enhancing the visual 
perception ability of drones is crucial to their intelligence level. Among them, it is necessary to 

focus on strengthening the detection, tracking and mapping capabilities of drones for dynamic 

objects. However, the existing visual SLAM systems carried by drones do not perform well in 

dynamic environments. This project designs a monocular visual SLAM system specifically for 

drones, aiming to achieve efficient three-dimensional mapping and target tracking, surpassing 

the limitations of simple static mapping and positioning. Besides, this project constructs a drone 

dynamic SLAM system developed on the ORB-SLAM3 structure, uses drone images to detect, 

track and map object motion models, and reconstructs environmental maps to obtain motion 

parameters with real physical scales. This project strives to optimize the input pre-processing 

module, improve the validity of data and output environmental maps and raster maps. The 

outcomes demonstrate the system's strong accuracy and adaptability in dynamic installation 

procedures. 

Keywords: Visual simultaneous localization and mapping, Drones, Dynamic objects tracking. 

1.  Introduction 

Drones have emerged as effective solutions in various fields, including environmental regulation, 

emergency response, and transportation logistics. In complex working environments, the processing 

capabilities of advanced drones depend on their intelligence level, which is significantly affected by 
their visual perception capabilities. Drones are often equipped with cameras and sensors like Inertial 

Measurement Unit (IMU) to provide raw data for simultaneous localization and mapping (SLAM) or 

Visual Odometry (VO) technologies, the foundation and core of perception, modeling, planning, and 
understanding [1]. However, many visual SLAM algorithms currently operate as though the scenes are 

static, and merely some geometric point information, not high-level semantic information, is contained 

in the information obtained [2]. Hence, to enhance the performance of drones in dynamic environments, 

an optimized algorithm specifically for drones’ visual SLAM systems is needed. 
Throughout the previous decade, the integration of dynamic target tracking and SLAM systems has 

made great progress. In the early days, dynamic target detection was performed by identifying it as a 

static target or by changing the external environment's texture and coloration. The above methods are 
still based on the framework of static SLAM. Recently, some researchers have integrated dynamic object 

tracking into SLAM, considering the movement of objects to improve environmental understanding 
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beyond static mapping and localization [3]. The Single Shot MultiBox Detector (SSD) target detection 

framework, which was proposed considering rapidity and real-time performance, increases speed while 

maintaining the accuracy of detection. To enhance the neural networks' speed of operation, miniaturized 

networks represented by MobileNet have been proposed. These networks reduce the number of network 
operations by cleverly designing network structures and simplifying convolution kernels. Among the 

visual SLAM algorithms developed recently which employ the feature point technique, the ORB-

SLAM2 algorithm is a comparatively exceptional algorithm framework. Multiple elements are 
frequently present in the image information stream that the visual SLAM algorithm receives. By 

integrating the target detection network's advantages in semantic information extraction with the exact 

geometry data acquired by the SLAM algorithm, the robot may acquire more hierarchical, structured, 

and semantic map information from its surroundings. In recent years, some studies have eliminated 
dynamic points within the frame of view of the camera based on the prior information of the target 

detection results and the measurement information of the dynamic point detection algorithm. To boost 

the algorithm's positioning accuracy. 
However, there are still many areas for improvement in the process of combining SLAM with drones. 

First, the monocular camera carried by the drone lacks the ability to process information and the ability 

to quickly reconstruct 3D maps, which adds uncertainty when dealing with dynamic targets with speed. 
Besides, the images processed by conventional SLAM systems rarely contain visual phenomenon 

information based on the unique bird's-eye view of drones. 

This project takes the complex and dynamic outdoor laboratory environment as the background, 

explores the construction method of semantic maps in a dynamic environment, and combines the visual 
SLAM system based on one RGB-D camera utilizing the SSD framework for deep convolutional neural 

networks based on regression prediction and multi-scale prediction to design an algorithm to remove 

dynamic feature points, process 2D semantic image information, and build a 3D semantic target database. 
Our contributions include: 

 Building the drone monocular vision system to attain effective target detection, tracking, and 3D 

mapping. It goes beyond the limitations of static mapping-only positioning. 

 Training and building a SLAM system based on drone datasets, as drone scenarios differ from 

traditional vehicle scenarios, necessitating a specialized approach. Experimental testing confirmed 
the model's effectiveness. 

 Combining and optimizing the latest visual technology to achieve pre-processing of 2D semantic 

data and greatly improve system accuracy. 

The proposed SLAM system uses dynamic feature point elimination, tracks dynamic objects, 

reconstructs the 3D model of the target in combination with semantic information, builds a dynamic 
semantic map, and obtains a grid mesh model that is beneficial for drone flight in a dynamic environment. 

The final analysis results in a map combining the environment and dynamic targets. 

2.  Related work 
The dynamic visual SLAM has been well developed. In this chapter, Section 2.1 will focus on the 

principles, development, shortcomings, and specific implementation steps of dynamic visual SLAM. 

Section 2.2 will introduce the current application status of SLAM on drones. 

2.1.  Visual SLAM system 
Visual SLAM is an algorithm that, in an unknown environment, utilizes visual sensors, including 

cameras, which concurrently estimate the subject's motion trajectory and reestablish the three-

dimensional structure of the surrounding environment. When compared to laser SLAM, visual SLAM 
has the advantage of being cheaper to execute, easy installation, comprehensive environmental 

information, and simplified sensor integration. Consequently, it has found extensive application in the 

domain of mobile robotics, such as drones. Two of the primary types of conventional visual SLAM 
algorithms are the feature-point-based approach and the direct method. The feature point-based method 
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first extracts the input image's feature points and their descriptors, then uses feature point matching to 

estimate camera motion and construct an environmental map. This method retains the image's primary 

information and minimizes the amount of computation, but there are problems such as long feature 

extraction times, ignoring some image information, and matching failure in textureless areas. The direct 
method is presuming the grayscale invariance of pixels, directly using the original pixel information of 

the image to minimize photometric error when estimating the scene's composition and camera motion. 

This method regards the entire process as an energy minimization problem and solves the camera pose 
by iteratively optimizing the energy function. The algorithm can function normally as long as it detects 

variations in the amount of darkness and light in the scene. The direct approach, as opposed to the feature 

point method, maximizes the information in the image and may effectively portray areas with little 

roughness [4]. 
Furthermore, visual SLAM algorithms can be classified into two categories: tightly coupled and 

loosely coupled, based on how the camera and other sensors, like the IMU, are fused together. The 

tightly coupled method jointly optimizes all sensor data, which is more accurate but more 
computationally intensive, while the loosely coupled method optimizes sensor data separately, which is 

slightly less accurate but more efficient. 

Regardless of the visual SLAM algorithm used, core issues such as data association, motion 
estimation, loop detection, and pose graph optimization need to be solved. In complex environments, 

such as dynamic scenes and complex lighting, the robustness and accuracy of existing algorithms still 

need to be further improved [5]. 

The visual SLAM process can be divided into five key stages: sensor data acquisition, visual 
odometer, back-end optimization, closed-loop detection, and mapping. During the front-end phase, 

landmarks are identified, and the camera's pose is estimated in order to achieve real-time location by 

removing and matching feature points from the image. Subsequently, the back-end optimization link 
eliminates the accumulated error through technologies such as inter-frame common view relationships, 

thereby enhancing the accuracy of positioning and map construction. When a closed loop in the pose 

estimation is detected, that is, the similarity between two frames exceeds a predetermined threshold, the 

system will optimize these landmarks and poses. To enhance the expectations of map construction. The 
sensor data acquisition stage involves obtaining raw data from sensors, such as cameras, and performing 

the necessary pre-processing for subsequent work. In a multi-sensor fusion system, this stage also 

includes processing data from other sensors, such as IMUs and encoders [6]. 

2.2.  Positioning and navigation for drones 

The basis and premise for drones to achieve a range of intricate functions, including path planning, 

obstacle avoidance, flight control, and precise positioning. Three types of positioning methods are 
widely used at present: one is based on external devices to provide accurate location information, mainly 

including GPS and motion capture; one is the optical flow method for flight navigation and obstacles, 

and the robot is visually measured and relative motion perceived through the optical flow algorithm; 

and the other relies on the simultaneous localization and mapping (SLAM) of the environment by the 
quadcopter itself, which restores the environmental profile through sensors and simultaneously locates 

its position in the map to achieve navigation. Among them, GPS and IMU are the mainstream algorithms 

for outdoor use and have been widely used. The optical flow method can only determine the relative 
posture movement but cannot determine the absolute position, so it is generally used for stable hovering 

indoors. The SLAM method requires real-time map construction, which is divided into laser SLAM 

depending on lidar and visual SLAM based on monocular, binocular, or RGB-D cameras. In the scenario 
of indoor positioning, there have been many related studies, but it is not widely used in commercial 

drone applications. Among the visual SLAM methods, there are those based on VO (visual odometry) 

and VIO (inertial visual odometry). Among the VO-based methods, the framework that is more widely 

used on drones is SVO. This is a visual odometry calculation method published in 2014 by the laboratory 
of Professor Scaramuzza of the University of Zurich [7, 8]. In the flight experiment, this method tracked 

a distance of 84 m, and the position error was still controlled within ±0.1 m. The speed can reach 
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hundreds of frames per second, which is currently a method in visual SLAM that is more suitable for 

drones. Among the VIO-based methods, the Hong Kong University of Science and Technology has 

open-sourced a VIO algorithm named VINS-Mono, which is implemented using a tightly coupled 

method and restores the scale through monocular and IMU with excellent results [9]. 

3.  Methods 

3.1.  General Introduction 

The ORB-SLAM3 framework serves as the foundation for the proposed SLAM system. It can be 
equipped with a monocular camera to capture images, and the environmental construction of the target 

object and the poster display of the camera are realized through code. At the same time, the system 

integrates a functional module for tracking objects for obstacle avoidance [10]. New functional modules 

suitable for drone positioning, tracking, and navigation are integrated into the ORB-SLAM3 framework. 
This method uses 2D semantic information to reconstruct a 3D environment map, enabling drones to 

recognize and track objects in a dynamic environment. The overall steps include the construction of the 

SLAM framework, the pre-processing module, pre-processing process synchronized with the SLAM 
framework, target three-dimensional spatial positioning, dynamic semantic map building, and 

implementing 2D rasterized maps. 

3.2.  ORB-SLAM3 Algorithm and RGB-D camera 
The first model to use fisheye and pinhole lenses, ORB-SLAM3 completes visual inertial and multi-

map SLAM with the addition of monocular, binocular, and depth cameras. ORB-SLAM3 is a visual-

inertial SLAM system depending on tight feature coupling. The principle is shown in Figure 1. Its 

framework parts are tracking threads, local mapping, and closed-loop detection. In the figure, the 
keyframes run through the entire algorithm, connecting these three parts and containing the camera 

information of the image frame, ORB feature points, and IMU calibration parameters [11]. The tracking 

thread's tasks include keyframes creation and an approximate estimation of the camera's pose. To 
estimate the pose, ORB-SLAM3 incorporates IMU pre-integration into the tracking thread. In normal 

tracking, the distance of the object from itself is calculated by actively projecting known patterns, which 

improves the matching robustness. 

 

Figure 1. ORB-SLAM3 framework  
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After measuring the depth value, the RGB-D camera uses mechanical installation to determine the 

relative pose, uses the depth and color image pixels for pixel pairing, and outputs the corresponding 

color image and depth map. Distance information and color information can be read at the same position, 

thereby calculating the pixel coordinate value and generating a point cloud. Although the depth camera 
can actively measure the depth of each pixel using structured light, it is easily affected by sunlight and 

is not suitable for objects on reflective surfaces. Considering that the application scenario of the 

experimental camera this time is a mine tunnel without sunlight, compared with other types of cameras, 
the algorithm's accuracy and stability are greatly reduced in dim environments. Although the RGB-D 

camera [12] using TOF technology has poor resolution, it can meet the needs of SLAM for calculation 

accuracy and environmental information and has good performance in motion scenes, which is suitable 

for the research and development of visual SLAM. 

3.3.  Pre-processing module 

The pre-processing module mainly combines cutting-edge computer vision technology to complete 

dynamic object detection of input image information, monocular depth estimation, and optical flow 
estimation in order to finish extracting the dynamic feature points. The SLAM system faces the 

following problems in outdoor environments:  First, learn how to effectively distinguish dynamic 

objects from static environments with the movement of the drone itself. Secondly, to maintain efficient 
tracking, considering the distance between the drone and the ground target may cause the target image 

to account for a small proportion of the input image. The pre-processing module mainly combines 

cutting-edge computer vision technology to complete dynamic object detection of input image 

information, monocular depth estimation, and optical flow estimation to complete the extraction of 
dynamic feature points, thus enhancing the system's accuracy in dynamic situations outdoors. 

(1) Dynamic object detection. At present, various techniques employ deep learning techniques to 

eliminate dynamic spots to polish SLAM, such as the famous DS-SLAM, DynaSLAM, etc. However, 
both of these methods combine SLAM and semantic segmentation recognition. Using semantic 

segmentation can more accurately select dynamic objects without wasting static points, but their running 

speed is greatly reduced and the computational cost is too high. Considering the foreground and the 

existence of static objects (vehicles) and dynamic objects (pedestrians and vehicles) in the experimental 
scene, the Yolo target detection technique is employed to exclude dynamic feature points. The Yolo 

system has high accuracy in similar environments. This project utilizes Yolov8 as the fundamental 

method for dynamic object detection. After introducing the attention mechanism, we use the COCO 
datasets for training, fine-tune it on the VisDrone 2019 datasets, and finally, obtain a dynamic object 

detection model with good training results. 

The existing Yolov8 model performs well in target detection on conventional datasets but poorly in 
complex, dynamic environments [13]. Experiments have shown that, for this dataset, the recognition 

effect of conventional convolution can be optimized by introducing the CBAM attention mechanism. 

CBAM (Convolutional Block Attention Module) focuses on target object recognition and includes two 

separate components: Channel Attention Module (CAM) and Spatial Attention Module (SAM). This 
mechanism can be integrated into existing modules while saving parameters and computational 

complexity, thereby introducing the calculation of the attention mechanism during feature extraction. 

The role of the attention mechanism is to perform weighted calculations on different targets in the feature 
map in different dimensions, improve the algorithm's ability to extract the main features, and thus 

improve the accuracy of target detection. This system improves the C3 module in the backbone of 

Yolov8 to the CBAMC3 module; that is, the last standard convolution of C3 is changed to an attention 
mechanism module, and attention calculation is integrated into the feature extraction process. 

(2) Monocular depth estimation. In the input image, static areas and potential dynamic areas can be 

distinguished. Using the monocular depth estimation method can help the system maximize the 

collection of dynamic feature points. This project takes advantage of an advanced computer vision 
method, DEPHT-ANYTHING trained on KITTI and FlyingChairs, to complete the depth estimation of 
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potential dynamic areas, output relative depth, calculate absolute depth, and feedback on the processed 

depth image. 

Optical flow estimation. There may be multiple dynamic objects in the images obtained by the 

monocular camera of an outdoor drone, so an optical flow estimation module is presented with complete 
the unified tracking of the feature points of dynamic objects. This is because optical flow estimation can 

assign points to the dynamic objects in the dynamic scene and propagate between frames, thereby 

forming a dense optical flow to avoid the failure of dynamic object tracking. This system uses Matchflow 
[14] as the optical flow estimation method, which is trained on the FlyingChairs, Sintel, and KITTI 

training data sets. It can output the contours of dynamic objects in static scenes. 

In general, the pre-processing module processes the input semantic information and continuously 

outputs the information of dynamic feature points. This useful information will play a role in subsequent 
modules. 

3.4.  Pre-processing process synchronized with SLAM framework 

To achieve semantic SLAM in dynamic contexts is the main objective of this project. Applying the 
aforementioned techniques, the system first identifies static and dynamic objects and passes the object 

frame data to ORB-SLAM3. Subsequently, in ORB-SLAM3, the feature points within the dynamic 

objects are eliminated. This can enhance the system's efficiency in a very dynamic setting. 
The prior implementation approach involved running Yolov8 first, obtaining the object frame data 

in.txt format, extracting this data employing ORB-SLAM3, and then performing the necessary follow-

up work. Before now, the entire process was asynchronous and not real-time. This project achieves 

synchronization through the use of the UNIX domain socket communication mechanism. The steps are 
as follows: 

Add the initialization of the socket at the beginning of the rgb_tum.cc file of the ORB-SLAM3 code. 

Then, add two functions to the rgb_tum.cc file of the ORB-SLAM code. The function of the 
LoadBoundingBoxFromPython function is to read the data we need from a sentence of object frame 

data and store it. The function of the MakeDetect_result function is to split the object frame data from a 

piece of object frame data one sentence at a time and then call the LoadBoundingBoxFromPython 

function to read them separately. To modify the detect.py code of Yolov5, two steps were done. One 
was to delete the code for storing pictures in files in order to speed up the program. The second was to 

add a socket to transfer the object frame data of one frame to Candand at a time. 

3.5.  Target three-dimensional spatial positioning 
The target three-dimensional spatial positioning module is mainly divided into two steps, as shown in 

Figure 2. First, the target relative to the camera posture is determined by integrating the intrinsic 

information of the camera with the keyframe information and the output findings of the target detection 
module. Then, to finish solving the target object's position concerning the world coordinate system, the 

keyframe information is used to pick the acquired camera pose data. 

The target three-dimensional spatial positioning module consists of three main nodes. The first driver 

node uses the RGB-D camera sensor to gather information, forwarding the picture and depth data to the 
subsequent node. The second node utilizes the ORB-SLAM3 algorithm for posture estimation and 

provides a matrix that transforms the camera coordinate system from the world coordinate system. The 

third three-dimensional spatial positioning node obtains the first two nodes' picture and posture data and 
realizes the three-dimensional coordinate solution of the target through the integrated pre-processing 

module. 

This module creates three subscription topics, which respectively receive the camera pose, color 
information, and depth image, and synchronize the timestamps of the three. The synchronized key frame 

image, the corresponding depth image, and the camera's position in relation to the global coordinate 

system are passed to the pre-processing module. The detection module outputs the pixel coordinates of 

the detection image and the target detection frame and afterwards utilizes the pixel coordinates to 
calculate the target's three-dimensional position about the camera coordinate system, camera internal 
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parameters, and depth values. Among them, the depth value is determined by the pixel coordinates of 

the target center point, the depth image, and the depth factor. In order to reduce the impact of the 

fluctuation of the single-point depth value, this paper uses the average depth value of the 5×5 

neighborhood of the target point. Finally, the three-dimensional coordinates of the target in the world 
coordinate system are solved when paired with the camera's position with respect to the coordinate 

system. The following is the basic formula for determining the camera pose: 

                                    𝑧 =
𝑑

𝑑𝑒𝑝𝑡ℎ
                                    (1) 

                                   𝑥 =
(𝑢−𝑐𝑥)𝑧

𝑓𝑥
                                   (2) 

                                   𝑦 =
(𝑣−𝑐𝑦)𝑧

𝑓𝑦
                                   (3) 

In the formula, (x, y, z) is the object coordinate of the camera, so (u, v) is used to find the pixel 
coordinate. 

3.6.  Dynamic semantic map building 

If a moving object enters the camera's field of vision and causes significant movements during the 
SLAM map creation process, this will impact the estimation of the camera's location and posture. The 

moving object's trajectory will appear on the point cloud map simultaneously, and the data will be 

preserved regardless of whether the point cloud map is transformed into another format. The inability to 
detect whether a moving object can pass safely prevents direct navigation using maps containing 

dynamic object information. How to find the area of dynamic objects in the image sequence and 

eliminate the influence of these areas has been the focus of research in the past two years. This project 

improves the ORB-SLAM3 framework by adding dynamic and static point detection algorithms, target 
detection algorithms, and dynamic map construction algorithms to realize the semantic map construction 

process in dynamic environments. This project completes the target recognition and positioning 

experiment in dynamic environments.  

3.7.  Implementing 2D rasterized maps 

In order to facilitate the navigation of drones, a 2D raster map is implemented. The construction of the 

raster map is based on the construction and preservation of the dense point cloud map. Based on ORB-

SLAM3, a dense point cloud map is constructed in real-time. On the basis of the point cloud map, an 
octree map and a two-dimensional raster map containing occupancy information are constructed to 

facilitate subsequent obstacle avoidance, navigation, and other functions. The following problems may 

occur during the process: 

 Problems that may be encountered in the real-time display of Octomap in the ROS environment. 

 The point cloud is perpendicular to the grid. 

 The octree map is not fully displayed. 

 The ground is also displayed as occupied. 

Solutions include optimizing display settings, ensuring coordinate systems are aligned, adjusting 

Octomap resolution and updating regions, and avoiding false detections through ground filtering or 

adjusting occupancy thresholds. 

4.  Results 

4.1.  Experiment setup 

After the algorithm is built and optimized in Ubuntu 18.04, simulation experiments are performed using 

an open-source dataset (https://github.com/lemonhi/drone_dataset/tree/main). The datasets are captured 
by the RBG monocular camera carried by the DJI Mini 4 drone. The datasets obtain basic information 
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on the streets and roads from a bird's-eye view.  The data set analyzed in the experiment is shown in 

Figure 2. 

 

Figure 2. Partial datasets 

4.2.  Experiment results 

First, use the pre-processing module to analyze the datasets. Some results of object detection frame 

recognition, monocular depth estimation, and optical flow estimation are respectively shown in Figures 
3, 4, and 5. 

 

Figure 3. Partial object detection 
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Figure 4. Partial monocular depth estimation 

 

Figure 5. Partial depth estimation 

Figure 6 shows the results of the experiment on the dynamic system after the datasets were built. As 

shown in the figure, the black background is the result of 3D remodeling, the red line is the movement 

route of the camera, and the blue line is the movement route of the dynamic object (moving vehicle). 

 

Figure 6. Illustration of the results on the drone datasets 
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Figure 7 shows the 2D grid path of the drone used in the pre-test after the debugged rasterization 

module is combined with MATLAB output, and Figure 8 shows the output path diagram of the dynamic 

object (moving vehicle) in the datasets studied in this paper. 

 

 

 

Figure 7. pre-test result 
 
Figure 8. path diagram of the dynamic object 

5.  Discussion 

5.1.  Discussion of optimized object detection 

Compared with the original Yolov8 experimental results, the improved model can more effectively 

obtain the environment's semantic information and more accurately identify the target object, with a 
significant improvement in the accuracy of the dynamic object (a moving car) shown in Figure 9. The 

comparison with other methods is shown in Table 1. 

 

Figure 9. Accuracy of dynamic object 

Table 1. Comparison of different Yolo 

Method mAP@.5 mAp@.5:.95 

Yolov3 0.431 0.213 

Yolov5 0.492 0.293 

Yolov8 0.573 0.315 

Ours 0.893 0.701 
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5.2.  Comparison of this SLAM system with other SLAM 

First, the VDO-SLAM system is used together with this solution to experiment on the KITTK datasets, 

and the results are compared. VDO-SLAM is also a system based on monocular vision and has certain 

similarities with this solution. The results are shown in Table 2. 

Table 2. Comparison of different SLAM 

 

Method 

VDO-SLAM[15] Ours 

Camera Pose Object Trace Camera Pose Object Trace 

𝐸𝑟(deg) 𝐸𝑡(m) 𝐸𝑟(deg) 𝐸𝑡(m) 𝐸𝑟(deg) 𝐸𝑡(m) 𝐸𝑟(deg) 𝐸𝑡(m) 

00 0.1830 0.1847 2.0021 0.3827 0.0732 0.0756 1.6821 0.3794 

01 0.1772 0.4982 1.1833 0.3589 0.00672 0.1255 1.0476 0.4372 

02 0.0496 0.0963 1.6833 0.4121 0.0387 0.0583 1.0405 0.4103 

03 0.1065 0.1505 0.4570 0.2032 0.0736 0.1322 1.0459 0.3870 

04 0.1741 0.4951 3.1156 0.5310 0.0656 0.1467 1.9683 0.6202 

 

The table displays the translation and rotation error values for the two approaches. By comparison, 
this method has better accuracy. At the same time, this method may not be able to accurately propose 

dynamic feature points when processing dynamic scenes, so it has similar accuracy to the other method. 

5.3.  Discussion on the practicality of this solution 

This project mainly proposes a dynamic SLAM system for the bird's-eye view of drones, which can be 
confirmed to be highly effective in experimental results. This solution combines a variety of pre-

processing modules to obtain more robust analysis data, and achieves communication synchronization 

between the pre-processing module and the SLAM system, which is beneficial to its practical application 
and effectiveness on real drone platforms. Better integration. This solution also combines the object-

wise tracking method for the elimination of dynamic and static feature points, which can significantly 

improve the system's processing capabilities for dynamic scenes. 

6.  Conclusion 

This project aims to establish a drone-based dynamic SLAM system, and uses orb-SLAM3 as the basic 

framework to set up the pre-processing flow of the input image (object detection frame, depth map and 

dense optical flow estimation), and realizes the visualization of the dynamic environment on the map 
and the output of the processed raster map, thus realizing the relatively complete construction of the 

drone-based SLAM system. This topic endeavors to optimize the input pre-processing module, improve 

the effectiveness of data and repair the output result of the whole system. Meanwhile, this system has 
good adaptability to dynamic environments. 

This solution also has many areas that can be optimized in the subsequent results. a) In the process 

of camera positioning, the existence of dynamic key points will interfere with the positioning of the 
camera. The key to improving the camera's positioning accuracy in a dynamic environment is to discover 

how to remove dynamic points from the positioning process. This project proposes a moving point 

identification algorithm based on the optical flow algorithm, but its accuracy is low, and it is also prone 

to many false detections. b) When there is an object occlusion, it will affect the accuracy of the system, 
and more refined segmentation can be used. 
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