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Abstract. Contrastive learning is an important technique in the field of machine learning for 

learning data representations. In the field of self-supervised visual representation learning, the 

strategy of positive and negative sample selection is key to improving the efficiency and 

effectiveness of model learning. Traditional self-supervised learning methods often employ 

random sampling strategies to select positive and negative samples, but this approach may result 

in uneven sample quality when dealing with complex datasets, thereby affecting the learning 

outcomes. To alleviate this problem, this study is dedicated to exploring more effective strategies 

for positive and negative sample selection and processing to optimize the self-supervised 

learning process. To this end, we propose an improved method of self-supervised learning called 

contrastive learning with enhanced diversity. On the one hand, this method utilizes the weight 

parameters of the DINO pre-trained model to initialize the feature extraction network of SimCLR, 

providing more accurate calculations of feature similarity. On the other hand, by setting a 
threshold on the feature similarity matrix and penalizing (subtracting 0.5 from) similarity scores 

that do not exceed this threshold, we reduce the excessive impact of high similarity scores on 

model training, thereby helping the model better distinguish between positive and negative 

samples. In downstream image classification tasks, we conducted detailed evaluations of the 

improved model, specifically including fine-tuning and linear evaluation aspects. Experiments 

show that the proposed approach improves the performance of the loss functions and improves 

the accuracy of  the proposed SimCLR model.  

Keywords: Contrastive Learning, Positive and Negative Sample Selection Strategy, Pre-trained 

Model, Similarity Matrix. 

1.  Introduction 

Contrastive learning, as a primary approach within self-supervised learning, is widely applied to feature 
learning across various data types such as images [1], text [2], and sound [3]. The aim of contrastive 

learning is to minimize the distance between instances of the same class while maximizing the distance 
between instances of different classes. The core idea of this approach lies in learning effective feature 
representations by comparing (contrasting) the similarity and dissimilarity between data samples, as 
depicted in Figure 1. In contrastive learning, the strategy for sampling positive (similar) and negative 
(dissimilar) samples is a crucial area of research because it directly impacts the effectiveness and 
efficiency of the learning process [4]. The choice of which samples to use as positives and negatives 
profoundly influences the learning objectives and difficulty during optimization. Moreover, in practical 
applications, sample distributions may exhibit high levels of imbalance and complexity. Therefore, 
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designing effective sampling strategies for selecting positive and negative samples is a significant 
research challenge aimed at enhancing model learning efficiency and generalization capabilities. 

 

Figure 1. Basic conceptual diagram of contrastive learning. 

Research on sampling strategies for positive and negative samples in contrastive learning has been 
continuously evolving, and as of 2023, significant progress has been made in this field. During the 

dataset sampling process, several main strategies are currently employed: firstly, random sampling [5], 
which involves randomly selecting positive and negative samples from the dataset; secondly, hard 
negative mining [6], which focuses on selecting negative samples that are highly similar to positive 
samples; and finally, false negative identification strategies [7], which aim to identify negative samples 
that actually belong to the same semantic category as positive samples using specific methods, and 
subsequently exclude or treat them as positive samples in contrastive learning. While these methods are 
effective, they also have their limitations. For instance,  

1. Random sampling may lead to uneven sample quality when dealing with imbalanced data 
distributions, thereby affecting overall learning effectiveness.  

2. Overemphasis on hard negative mining can potentially cause model overfitting, and the process of 

identifying hard negatives incurs additional computational costs.  
3. False negatives may lead to misleading learning and degradation of model performance, yet effective 

criteria for filtering false negatives (and false positives) are currently lacking. 

Building upon SimCLR [8], this study innovates by integrating weights pretrained under the DINO 
framework into the ResNet-50 architecture. Leveraging self-supervised learning on extensive unlabeled 
data, DINO captures richer and more discriminative visual features. These features serve as the starting 
point for the SimCLR task, facilitating faster learning and improved generalization of the model. 
Additionally, we adjusted the similarity matrix of sample pairs by introducing a threshold: similarity 
scores below this threshold are reduced by 0.5, thereby decreasing the similarity scores between pairs 
that are already less similar. This adjustment further enlarges the distance between positive and negative 

sample pairs.  

2.  Related work 

Contrastive learning falls within the realm of self-supervised learning. This learning approach has 
demonstrated significant development and application potential in various fields such as image 
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recognition [9], natural language processing [10], and sound analysis [11]. The following are some 
important works related to contrastive learning, each contributing to the advancement of this field. 

2.1.  SimCLR method 

SimCLR, proposed by Google in 2020, is a straightforward yet effective framework for visual 
contrastive learning, as depicted in Figure 2. Its core idea is to minimize the consistency among different 
images (negative sample pairs) while maximizing the consistency among similar images (positive 
sample pairs) to learn feature representations. The specific structure is as follows: 

 

Figure 2. SimCLR framework. 

• SimCLR applies two different data augmentation methods to the same image to obtain a pair of 
positive samples. These augmentations may include random cropping, color distortions, Gaussian 
blurring, and others. For negative samples, SimCLR utilizes all other images within the current batch; 
in each batch, besides the positive samples matching a given image, all other images are considered 
as negative samples. 

• SimCLR employs the deep neural network ResNet-50 as an encoder to extract feature representations 
from images. 

• After feature extraction, SimCLR utilizes a small neural network (projection head) to project the 
features into a lower-dimensional space. 

• In this space, contrastive loss computation takes place. The loss function utilized is NT-Xent loss 
(Normalized Temperature-scaled Cross Entropy Loss) [12]. This type of loss function is particularly 

suitable for handling a large number of negative samples.  

2.2.  MoCo method 
MoCo [13], proposed by Facebook AI in 2019, is another influential contrastive learning framework, as 
shown in Figure 3. Its primary contributions include the introduction of a momentum encoder and a 
dynamic dictionary queue, effectively enhancing the diversity and quantity of negative samples. The 

specific architecture is detailed as follows: 
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• MoCo utilizes two encoders: one for the current image (Query Encoder) and another for encoding 
keys in a dictionary (Key Encoder). The parameters of the Key Encoder are the exponential moving 
averages of the Query Encoder's parameters, a design that helps maintain consistency in encoding. 

• MoCo shares the same positive sample selection strategy as SimCLR, creating positive sample pairs 
by applying different data augmentation techniques to the same image. 

• In contrast to positive sample selection, MoCo innovates in negative sample selection by employing 
a dynamic dictionary queue to store historical encoded samples as negatives. This queue, of fixed 

size, retains representations of samples from previous batches. As new samples are encoded, they are 
appended to the end of the queue, displacing the oldest samples at the front.  

• MoCo uses the InfoNCE [14] contrastive loss function to compute the similarity between positive 
and negative sample pairs. 

 

Figure 3. MoCo framework. 

2.3.  Contrastive Learning with Hard Negative Samples 
The paper "Contrastive Learning with Hard Negative Samples" [15] extensively discusses methods and 
principles of using hard negative samples in contrastive learning. This strategy dynamically selects 
negative samples close to positive sample features based on the current model state, considering inter-
sample similarity (inner product). During the model training process, the selected hard negative samples 
evolve accordingly. Initially, the model may struggle to differentiate between different samples, hence 

many negative samples appear "hard". As the model gradually learns more effective feature 
representations, it becomes capable of accurately identifying genuinely hard negative samples.  

2.4.  Incremental False Negative Detection for Contrastive Learning 
The paper "Incremental False Negative Detection for Contrastive Learning" [16] introduces an 
incremental method for detecting and identifying false negative samples. This approach gradually 

removes false negative samples based on their confidence scores, starting from those that are relatively 
easier to distinguish, thereby mitigating their negative impact on the overall contrastive learning model. 
As the model performance improves, progressively more challenging false negative samples are 
excluded to further optimize model performance.  
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2.5.  Other work 
The paper "Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning" [17], unlike 
traditional contrastive learning methods that rely on pairs of negative samples, explores an algorithm 
that learns without directly utilizing negative sample pairs [18]. It introduces two networks, a target 

network and an online network, where the online network is trained to predict outputs of the target 
network without directly employing pairs of negative samples.  

"Unsupervised Learning of Visual Features by Contrasting Cluster Assignments" employs a unique 
approach by contrasting cluster distributions between different views (i.e., augmented versions of data) 
for contrastive learning. This method allows the model to perform representation learning and clustering 
simultaneously without directly comparing data samples. 

"Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training 
Paradigm" [19] proposes a multimodal contrastive learning model that jointly trains image and text 

representations on large-scale datasets. By learning correlations between image content and descriptive 
text, it understands and generates cross-modal content, exhibiting strong generalization capabilities for 
new tasks. 

"Representation Learning with Contrastive Predictive Coding" [20] introduces a contrastive learning 
approach applied to sequential data. It learns useful representations in sequences by predicting future 
data representations rather than directly reconstructing data, showing outstanding performance in both 
audio processing and natural language tasks. 

"Prototypical Contrastive Learning of Unsupervised Representations" [21] combines prototypical 
learning with contrastive learning to enhance learning efficiency and representation quality. This method 
maps data points onto representations of prototypes (i.e., centroids or representative points of data), 
particularly beneficial for tasks requiring fine-grained classification or segmentation. 

3.  Contrastive Learning Method Based on Differential Augmentation 

3.1.  Research motivation 
Current contrastive learning approaches predominantly utilize randomly generated pairs of positive and 
negative samples [22]. While simple and effective, this approach may lead to inconsistent sample quality 
when handling complex datasets. Moreover, random generation can result in insufficient differences 
between positive and negative samples, making it challenging for the model to accurately distinguish 

between them. The distinctiveness between positive and negative sample pairs is crucial for the model 
to learn discriminative feature representations effectively in contrastive learning. Nonetheless, SimCLR 
fails to fully consider the similarity between samples when generating positive and negative sample 
pairs, resulting in inadequate discriminative power between them. 

Addressing these limitations, this study innovates upon SimCLR by proposing a novel method. 
Leveraging the DINO pre-training model [23], we compute feature similarities and adjust the similarity 
matrix by reducing elements below a specified threshold by 0.5. This adjustment further enlarges the 

gap between positive and negative samples, aiding the model in better distinguishing between them. (To 
facilitate better understanding of this operation, we provide an illustrative adjustment of the similarity 
matrix as shown in Figure 4.) 
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Figure 4. Illustrative Adjustment of Similarity Matrix 

3.2.  Representation Learning Method Based on SimCLR 

3.2.1.  Conceptual Overview 

SimCLR is a popular contrastive learning approach aimed at enhancing model performance in 
unsupervised or semi-supervised learning by learning feature representations of data samples. The 
fundamental concept of SimCLR involves applying different data augmentation transformations to the 
same image to generate multiple views and learning representations by maximizing the similarity 
between these views. This contrastive learning framework helps the model acquire more accurate feature 

representations.  

3.2.2.  Representation Learning Process 
Figure 5 illustrates the four main components of this framework. 

 

Figure 5. SimCLR Framework Structure 

(𝑧𝑖1, 𝑧𝑖2,……, 𝑧𝑖𝑘 are negative sample features corresponding to the ith sample) 

1. Data Augmentation: This process transforms the same data sample into two correlated views, 

labeled as 𝑥𝑖
1 and 𝑥𝑖

2, forming a pair of positive samples. The aim is to enhance the training data 

further by adding diversity to the samples. 
2. Feature Extractor: Utilizing the neural network base encoder f (·) (ResNet-50) as the feature 

extractor, which extracts feature representations from augmented data samples. 
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3. Projection Head: In neural networks, the function of the projection head g (·) is to project the data 
representations into a latent space suitable for computing contrastive losses. We apply a hidden layer 

MLP to obtain 𝑧𝑖 = 𝑔(ℎ𝑖) = 𝑊(2)𝜎(𝑊(1)ℎ𝑖), which introduces non-linear features using ReLU as 
the activation function. 

4. Contrastive Loss Function: This function is designed to increase the similarity between positive 
samples while decreasing the similarity between negative samples. By comparing the numerator and 
denominator, the model is constrained to learn relatively. Higher numerator values and lower 
denominator values indicate that the model successfully captures the associations between positive 
sample pairs and distinguishes them from other negative pairs. The loss function used in SimCLR is 

the NT-Xent loss: 

 𝑙𝑖,𝑗 = −𝑙𝑜𝑔
exp⁡(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)/𝜏)

∑ 𝐼[𝑘≠𝑖]exp⁡(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏)
2𝑁

𝑘=1

 (1) 

3.3.  Methodology and Model 

3.3.1.  Method Overview 

We have enhanced SimCLR by proposing a novel contrastive learning approach. In contrast to 
traditional SimCLR, we employ the DINO pre-training model to compute feature similarity. DINO is a 
visual Transformer model based on self-supervised learning, renowned for its strong feature extraction 
capabilities and learning efficiency, applicable across various visual tasks [24]. A key innovation of our 
method lies in the adjustment of the similarity matrix. In conventional SimCLR, the similarity matrix is 
solely used to measure the similarity between positive and negative sample pairs. However, we further 

modify the similarity matrix by applying adjustments specifically to elements with similarity scores 
below a given threshold, subtracting 0.5 from these scores. This adjustment aims to widen the distance 
between positive and negative sample pairs, thereby enhancing the model's ability to distinguish 
between them. 

3.3.2.  Feature Extraction from Pre-trained Models 

In our approach, we utilize the DINO pre-trained model for feature learning by loading its weight 
parameters into the ResNet-50 network.  

In DINO, the model initially learns feature representations from large-scale image data through self-
supervised learning. By constructing self-supervised tasks such as image reconstruction and contrastive 
learning, DINO autonomously learns statistical structures and semantic information within image data 
without requiring manual annotation. Experimental results demonstrate its outstanding performance 
across various visual tasks. Compared to traditional CNN models [25], DINO maintains lower 

computational costs while offering more discriminative and generalizable feature representations, thus 
providing a stronger foundation for solving diverse visual tasks. 

We incorporate the weights of the DINO pre-trained model into the ResNet-50 architecture of 
SimCLR. Through this integration, we apply the rich feature representations learned by DINO within 
the contrastive learning framework of SimCLR, thereby enhancing the model's performance in tasks 
such as image classification. 

3.3.3.  Enhancement of Contrastive Sample Diversity 

We introduced the Enlarge Distance operation on top of the original SimCLR model, which adjusts the 
similarity matrix to increase the distance between positive and negative samples. Specifically, we 
penalize similarity scores below a predefined threshold (subtracting a fixed value of 0.5). This 
adjustment effectively enlarges the gap between positive and negative samples, thereby enhancing the 
model's capability to differentiate between these two types of samples. This method focuses primarily 
on more challenging sample pairs, thereby improving the robustness and applicability of the model. 
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In Figure 6, we illustrate the distribution of sample similarity scores before and after the adjustment 
of the similarity matrix. Prior to adjustment, similarity scores exhibited a basic normal distribution, with 
most scores clustering around intermediate values and fewer scores concentrated near extreme values. 
This distribution pattern could lead the model to excessively prioritize sample pairs with high similarity 

scores, neglecting crucial information from other pairs. 
The change in distribution pattern following the adjustment reflects distinctive characteristics of the 

adjusted similarity matrix. Compared to the pre-adjustment normal distribution, the post-adjustment 
distribution tends to favor lower similarity scores, indicating that the model now focuses more on 
challenging sample pairs, while penalizing pairs with higher similarity scores to some extent. This 
adjustment aims to facilitate better learning of discriminative and generalizable feature representations, 
thereby enhancing the model's performance across various visual tasks. 

In summary, by carefully designing and adjusting penalty mechanisms, we can guide the model 

towards learning more discriminative and generalizable feature representations. This improvement 
strategy is not only applicable to traditional contrastive learning methods but can also be integrated with 
other self-supervised learning frameworks [26], offering novel approaches and methods for model 
training and feature learning.  

 

Figure 6. Distribution of Similarity Scores 
(The left image shows the pre-adjustment scenario, while the right image shows the post-adjustment 
scenario. After normalizing the feature vectors in the right image, the range of similarity scores becomes 

[0,1].) 

3.3.4.  Learning Process Representation 
This paper innovatively improves upon the SimCLR framework by optimizing aspects such as feature 
extractor and contrastive loss function. The following are the main four components of our model 
framework, as illustrated in Figure 7. 
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Figure 7. The improved model framework 

(𝑧𝑖1, 𝑧𝑖2,……, 𝑧𝑖𝑘 are negative sample features corresponding to the ith sample) 

1. Data Augmentation: [27] Here, we employ a variety of data augmentation techniques, including 
random cropping, color distortion, and Gaussian blur. The purpose of these augmentation operations 
is to generate two positively correlated views, enabling the model to learn the essence of image 
content rather than relying excessively on specific visual details.  

2. Feature Extractor: The feature extractor [28] is a core component of the model responsible for 
extracting meaningful feature representations from input data. We opted for the ResNet-50 backbone 
encoder. To enhance the model's representational power, we initialized it with weights pre-trained 

on the DINO framework. This initialization imbues the base encoder's features with enhanced 
discriminative capability. 

3. Projection Head: The projection head is a crucial component that maps feature representations into 
the contrastive loss space. Here, we employ an MLP with one hidden layer as the projection head, 
utilizing ReLU as the activation function for the hidden layer. This design enhances the model's non-
linear capacity, thereby enriching and distinguishing the feature representations more effectively. 

4. Contrastive Loss Function: In our enhancement, we introduced an Enlarge Distance operation that 
adjusts the similarity matrix across all pairs of samples. Specifically, we subtract 0.5 from similarity 

scores below a given threshold, thereby reducing the similarity scores of pairs that are not inherently 
similar, thereby enlarging the distance between positive and negative sample pairs. This operation 
helps to increase the distinctiveness between positive and negative pairs, enhancing the model's 

discriminative ability. Our loss function is defined as follows: 

 𝑙𝑖,𝑗 = −𝑙𝑜𝑔
exp⁡(𝑠𝑖𝑚′(𝑧𝑖,𝑧𝑗)/𝜏)

∑ 𝐼[𝑘≠𝑖]exp⁡(𝑠𝑖𝑚′(𝑧𝑖,𝑧𝑘)/𝜏)
2𝑁

𝑘=1

 (2) 

Our designed loss function numerator reflects the similarity of positive sample pairs, measured 
exponentially to maximize consistency among target samples. The denominator encompasses the sum 
of similarities for all sample pairs, covering both positive and other pairs. This design enables us to 
maximize the distinction between positive and negative sample pairs by comparing the similarity of 
positive pairs relative to all other pairs. 
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3.4.  Experimental Results 

3.4.1.  Experimental Dataset 

We conducted experiments on the CIFAR-10 and CIFAR-100 benchmark datasets to validate our 
approach. These datasets are widely used in evaluating and comparing the performance of various 
machine learning and deep learning models for image classification tasks. 

3.4.2.  Experimental Setup 
Our model was validated for the task of image recognition and classification, which is a fundamental 

task in the field of computer vision aimed at assigning input images to predefined categories. 
Specifically, we conducted detailed evaluations of the improved model through two aspects: Fine-tuning 
and Linear evaluation.  

3.4.3.  Implementation Details 

1. Model Structure: In our study, for feature extraction, we employed ResNet-50 and has been 
initialized with weights from the DINO pre-training model. Additionally, we utilized an MLP 
structure with a single hidden layer as a projection head to map high-dimensional features extracted 

from the feature extractor to a lower-dimensional representation space. ReLU was used as the 
activation function [29] to enhance the network's representational capacity. 

2. MLP Structure: The MLP (Multi-Layer Perceptron) [30] structure serves as the projection head to 
map high-dimensional features to a lower-dimensional representation space. This MLP structure 
consists of only one hidden layer. 

3. Optimization Method: We employed the LARS optimizer, LARS (Layer-wise Adaptive Rate 
Scaling) [31], designed to address issues of gradient stability and convergence in deep neural network 

training.  
4. Experimental Settings: The learning rate (LR) was set to 0.001; weight decay was set to 1e-5; batch 

size was 96; and the number of iterations was set to 200 epochs. 

5. Evaluation Metrics: The evaluation metrics included Top-1 and Top-5 classification accuracies.  

3.4.4.  Experimental Results and Analysis 
We extensively validated the improved model on CIFAR-10 and CIFAR-100 datasets, conducting 
detailed performance analysis. We will systematically delve into our experimental results, including 
performance enhancements across various tasks and datasets, as well as the advantages of the improved 
model relative to competitors. Our initial focus will be on the experimental results obtained on the 
CIFAR-10 dataset. 

Table 1. Comparison of Experimental Results on the CIFAR-10 Dataset. 

\ 
SimCLR 
(Linear 

evaluation) 

MoCo 
(Linear 

evaluation) 
Improvements 

SimCLR 
(Fine-
tuned) 

MoCo 
(Fine-
tuned) 

Improvements 

Top-1 
accuracy 

61.97 60.68 64.06 75 77.16 82.81 

Top-5 
accuracy 

75.52 71.22 78.13 82.25 86.92 88.61 

 
Through Table 1, it is evident that our model has achieved significant performance improvements in 

both Linear evaluation and Fine-tuned settings on the CIFAR-10 dataset. In Linear evaluation, our model 
achieved Top-1 and Top-5 classification accuracies of 64.06% and 78.13%, respectively. This represents 
relative improvements of 3.37% and 3.46%, demonstrating the effectiveness of our enhanced methods 
in feature extraction and classification tasks. Compared to MoCo, our model has also been significantly 

improved. 
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In Fine-tuned evaluation, our model achieved Top-1 and Top-5 classification accuracies of 82.81% 
and 88.61%, respectively. Compared to SimCLR, our model showed improvements of 7.81% and 
10.41% in Top-1 accuracy and relative improvements of 6.36% and 7.73% in Top-5 accuracy. In 
comparison with MoCo, our model exhibited increases of 5.65% in Top-1 accuracy and 1.69% in Top-

5 accuracy, with relative improvements of 7.32% and 1.94%, respectively. These results indicate that 
our enhanced model adapts better to new data in Fine-tuned scenarios, demonstrating improved 
generalization ability. As depicted in Figure 8, the Top-1 accuracy and loss function graphs on the 
CIFAR-10 dataset illustrate these findings. 

By contrasting the Top-1 accuracy and loss function graphs in Figure 8, we can visually observe the 
performance gains of the improved model relative to SimCLR. Experimental results indicate slight 
enhancements in both loss function and classification accuracy due to our refined methodologies. 

 

Figure 8. Training Results on the CIFAR-10 Dataset  
(where the first row includes the loss curve and top-1 classification accuracy curve for Linear evaluation; 

the second row includes the loss curve and top-1 classification accuracy curve for Fine-tuned evaluation). 

Next, we present our experimental results on the CIFAR-100 dataset. 

Table 2. Comparison of Experimental Results on the CIFAR-100 Dataset. 

\ 
SimCLR 
(Linear 

evaluation) 

MoCo 
(Linear 

evaluation) 
Improvements 

SimCLR 
(Fine-
tuned) 

MoCo 
(Fine-
tuned) 

Improvements 

Top-1 
accuracy 

52.08 59.37 59.9 68.75 72.41 76.04 

Top-5 
accuracy 

71.23 68.34 75.37 77.94 82.12 84.72 
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From Table 2, it is evident that our improved approach exhibits substantial performance gains on the 
CIFAR-100 dataset. In Linear evaluation, our model achieved Top-1 and Top-5 classification accuracies 
of 59.9% and 75.37%, respectively, marking improvements of 7.82% and 4.14% compared to the 
SimCLR model. Compared to MoCO, our model showed increases of 0.53% and 7.03% in Top-1 and 

Top-5 classification accuracies, respectively, further confirming the superiority of our approach across 
different datasets. 

In Fine-tuned evaluation, our model exhibited improvements of 7.29% and 3.63% in Top-1 accuracy 
compared to SimCLR and MoCo, respectively. For Top-5 accuracy, the improvements were 6.78% and 
2.6% over SimCLR and MoCo, respectively. These results underscore the significant advantages of our 
enhanced model in adapting to diverse datasets and tasks. As depicted in Figure 9, the Top-1 
classification curve and loss curve on the CIFAR-100 dataset further validate our model's performance 
gains. 

 

Figure 9. Training Results on the CIFAR-100 Dataset  
(where the first row includes the loss curve and top-1 classification accuracy curve for Linear evaluation; 

the second row includes the loss curve and top-1 classification accuracy curve for Fine-tuned evaluation). 

3.4.5.  Ablation experiments 
We conducted a series of ablation experiments on our improved method, focusing primarily on 
validating the effectiveness of the enhancement modules and threshold ablation experiments. Our 
improvements primarily involve loading the pre-trained DINO model and adjusting the similarity matrix. 
Below, we detail the results of our effectiveness validation experiments. 

Validation Experiments of Improvement Modules: 

We designed a series of experiments to evaluate the impact of two enhancements on model 
performance: whether to load the DINO pre-trained model and whether to adjust the similarity matrix. 

We employed a range of experimental conditions labeled as T/F, F/T, and T/T, where T indicates loading 
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and F indicates not loading. These combinations covered all possible scenarios, comprehensively 
assessing the contribution of each enhancement to model performance. As shown in Table 3 below, F/F 
denotes the original SimCLR model, T/F indicates loading only the DINO pre-trained model, F/T 
indicates adjusting only the similarity matrix, and T/T indicates both loading the DINO pre-trained 

model and adjusting the similarity matrix. 

Table 3. Validation of Enhancement Modules 

\ F/F T/F F/T T/T 

Top-1 accuracy 75 78.64 77.08 82.81 

Top-5 accuracy 85.42 87.56 87.05 88.61 

 
From the experimental results in Table 3, it is evident that two enhancements, loading the DINO pre-

trained model and adjusting the similarity matrix, significantly impact model performance. Firstly, we 
focused on the influence of the DINO pre-trained model on model performance. By comparing 
experimental conditions T/F and F/F, it can be observed that solely loading the DINO pre-trained model 
without adjusting the similarity matrix improved the Top-1 and Top-5 classification accuracies by 3.64% 
and 2.14%, respectively. This indicates that loading the DINO pre-trained model markedly enhances the 
model's feature representation capabilities, thereby improving its ability to learn from data and 
generalize. 

Secondly, we investigated whether adjusting the similarity matrix affects model performance. By 

contrasting experimental conditions F/T and F/F, we found that solely adjusting the similarity matrix 
without loading the DINO pre-trained model increased the Top-1 and Top-5 classification accuracies by 
2.08% and 1.63%, respectively. This suggests that adjusting the similarity matrix effectively enhances 
the clustering performance of the model in the feature space, improves similarity measurements between 
features, and consequently enhances classification performance. 

 

Figure 10. The loss curve of the validation experiment for the enhancement module. 

Lastly, we comprehensively assessed the combined effects of loading the DINO pre-trained model 
and adjusting the similarity matrix. By comparing experimental conditions T/T and F/F, it is evident 
that when both loading the DINO pre-trained model and adjusting the similarity matrix simultaneously, 

the model improved its Top-1 and Top-5 classification accuracies by 7.81% and 3.19%, respectively. 
This further confirms that the combined effect of these two enhancements is more significant than their 
individual applications alone, contributing significantly to enhancing model performance. 
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Figure 11. The Top-1 classification accuracy curve of the validation experiment for the enhancement 

module. 

We visualized the experimental results in Figure 10 and Figure 11, which include the loss curve and 

Top-1 classification curve from the validation experiments of the enhancement modules respectively. 
Through these plots, we can visually observe the variation in model performance under different 
experimental conditions, further validating the reliability and effectiveness of our experimental results. 

 
Threshold ablation experiment: 

To validate whether model performance is influenced by varying threshold conditions, we conducted 
threshold ablation experiments. Table 4 below presents the experimental results under different 
threshold conditions. 

Table 4. Threshold ablation experiment 

Threshold 0.25 0.4 0.65 0.7 0.75 0.8 0.9 

Top-1 accuracy 68.23 71.88 70.31 75 82.81 77.08 80.21 

Top-5 accuracy 77.6 78.13 84.9 82.29 88.61 85.94 85.42 

 
Based on the experimental results shown in Table 4, we conducted an analysis of the variation in 

model performance under different threshold conditions. Across these experiments, we observed that 

setting the threshold to 0.75 yielded the optimal performance, with the model achieving a Top-1 
classification accuracy of 82.81% and a Top-5 classification accuracy of 88.61%. 

The results of the threshold ablation experiments indicate that selecting appropriate thresholds during 
adjustment of the similarity matrix can significantly impact model performance. 

4.  Conclusion and Outlook 

4.1.  Conclusion  
This study undertook a targeted exploration in the field of image classification by integrating the weights 
of the DINO pre-trained model into the SimCLR framework and adjusting the similarity matrix to 
enhance the model's learning representation and generalization capabilities. This innovative adjustment 
mechanism provided crucial support for enhancing the performance of contrastive learning methods. 

Experimental validation on CIFAR-10 and CIFAR-100 demonstrated significant performance 
improvements in both Fine-tuning and Linear evaluation methods. These results indicate that our 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/101/20241021 

188 



 

 

proposed method shows potential in enhancing learning representation quality and efficiency, while 
paving the way for new perspectives and approaches in future exploration and practice. 

4.2.  Outlook 

The innovative approach proposed in this study provides new insights into the application of contrastive 
learning in image classification tasks. Moving forward, we aim to further explore the following 
directions to enhance model performance and application value: 

1. Continued Optimization of Model Architecture: 

• Investigate the impact of different network depths, widths, and activation functions on model 
performance. 

• Explore lightweight models to accommodate edge computing devices, enabling the model to operate 
in resource-constrained environments. 

2. Enhancement of Positive Pair Generation Methods: 

• Explore alternative strategies for generating positive sample pairs, such as using Generative 
Adversarial Networks (GANs) to obtain more diverse positive samples. 

• Experiment with multi-strategy fusion approaches, such as simultaneously employing data 

augmentation and generative models to create more challenging positive sample pairs. 

3. Exploration of Novel Evaluation Metrics and Datasets: 

• Develop new evaluation metrics tailored to contrastive learning to comprehensively measure various 
aspects of model performance. 

• Gather and construct more diverse and challenging datasets, particularly addressing issues like few-
shot learning and imbalanced class problems, to test and enhance the model's performance limits. 
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